【題目】已知:如圖,矩形ABCD的對角線AC與BD相交于點O,點O關(guān)于直線AD的對稱點是E,連接AE、DE.
(1)試判斷四邊形AODE的形狀,不必說明理由;
(2)請你連接EB、EC,并證明EB=EC.
【答案】(1) 四邊形AODE是菱形.理由見解析;(2)見解析.
【解析】
(1)利用對稱的性質(zhì),又因為四邊形ABCD是矩形,兩個結(jié)論聯(lián)合起來,可知四邊形AODE是菱形;
(2)先證出∠EAB=∠EDC,再證明△EAB≌△EDC,從而得出EB=EC.
(1)四邊形AODE是菱形.理由如下:
∵點O和點E關(guān)于直線AD對稱,
∴△AOD≌△AED;
∴OA=AE OD=DE;
∵由矩形ABCD,
∴OA=OD;
∴OA=OD=DE=EA;
∴四邊形AODE是菱形.
(2)連接EB、EC,如圖,
∵四邊形AODE是菱形,
∴AE=ED;
∴∠EAD=∠EDA;
∵四邊形ABCD是矩形,
∴AB=CD,∠BAD=∠CDA=90°;
∴∠EAD+∠BAD=∠EDA+∠CDA;
∴∠EAB=∠EDC;
∴△EAB≌△EDC;
∴EB=EC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D.
(1)求證:AE是⊙O的切線;
(2)若BC=2,∠D=60°時,求劣弧AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計圖中,m的值是 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1所示,在中,,,點在斜邊上,點在直角邊上,若,求證:.
(2)如圖2所示,在矩形中,,,點在上,連接,過點作交(或的延長線)于點.
①若,求的長;
②若點恰好與點重合,請在備用圖上畫出圖形,并求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為x=﹣1.給出四個結(jié)論:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正確結(jié)論的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+1的頂點為D,與x軸正半軸交于A、B兩點,A在B左,與y軸正半軸交于點C,當(dāng)△ABD和△OBC均為等腰直角三角形(O為坐標(biāo)原點)時,b的值為( )
A. 2 B. ﹣2或﹣4 C. ﹣2 D. ﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com