【題目】如圖,以ABCD的邊BC為直徑的⊙O交對(duì)角線AC于點(diǎn)E,交CD于點(diǎn)F.連結(jié)BF.過點(diǎn)EEGCD于點(diǎn)G,EG是⊙O的切線.

1)求證:ABCD是菱形;

2)已知EG2DG1.求CF的長(zhǎng).

【答案】1)見解析;(23

【解析】

1)如圖,連接OE,根據(jù)切線的性質(zhì)得到OEEG,根據(jù)平行四邊形的性質(zhì)得到OECDAB,推出ABBC,于是得到結(jié)論;

2)如圖,連接BD,由(1)得,CEAC12,得到點(diǎn)EAC的中點(diǎn),根據(jù)圓周角定理得到BFCD,根據(jù)相似三角形的性質(zhì)得到DF2BF4,由勾股定理即可得到結(jié)論.

1)證明:如圖,連接OE,

EG是⊙O的切線,

OEEG,

EGCD

∴四邊形ABCD是平行四邊形,

OECDAB,

∴∠CEO=∠CAB

OCOE

∴∠CEO=∠ECO,

∴∠ACB=∠CAB,

ABBC,

ABCD是菱形;

2)如圖,連接BD

由(1)得,OECD,OCOB,

AECE

CEAC12,

∴點(diǎn)EAC的中點(diǎn),

∵四邊形ABCD是菱形,

BD經(jīng)過點(diǎn)E,

BC是⊙O的直徑,

BFCD,

EGCD

EGBF,

∴△DGE∽△DFB,

DGDFGEBFDEBD12,

DF2,BF4

RtBFC中,設(shè)CFx,則BCx+2,

由勾股定理得,x2+42=(x+22,

解得:x3

CF3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥公司有A倉、B倉兩個(gè)原材料倉庫和甲、乙兩個(gè)加工廠,其中A合、B倉共原材料22000噸,從A倉、B倉運(yùn)往甲加工廠、乙加工廠的運(yùn)費(fèi)價(jià)如下表:

若將A倉的原材全部運(yùn)往乙加T所需的費(fèi)用與B倉的原材料全部運(yùn)往甲加廠所需費(fèi)用相同,

1A倉、B倉各有原材料多少噸?

2)若甲加工廠需要從A、B兩倉調(diào)運(yùn)9000噸原材料,乙加工廠需要從A、B兩倉調(diào)運(yùn)13000原材料,且從A倉運(yùn)送到甲加工廠的原材料最多9000噸,請(qǐng)問醫(yī)藥公司怎么調(diào)運(yùn)可使總運(yùn)費(fèi)最少?求出最少運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(0,4),COB上任意一點(diǎn),將ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到A′B′C′.若反比例函數(shù)y的圖象恰好經(jīng)過A′B的中點(diǎn)D,則k____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),今年受新冠肺炎疫情的影響,為落實(shí)教育部停課不停學(xué)的要求,我市中學(xué)生進(jìn)行居家線上學(xué)習(xí),為保證廣大學(xué)生的身心健康,有關(guān)部門就你每天線上學(xué)習(xí)時(shí)在室內(nèi)或室外安全區(qū)域體育鍛煉時(shí)間是多少的問題在某校開展了電話調(diào)查,隨機(jī)抽查了部分學(xué)生,再根據(jù)鍛煉時(shí)間t(小時(shí))進(jìn)行分組(A組:t0.5B組:0.5≤t1,C組:1≤t1.5D組:t≥1.5),繪制成如圖兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:

1)此次抽查的學(xué)生數(shù)為   人,并補(bǔ)全條形統(tǒng)計(jì)圖;

2)計(jì)算扇形統(tǒng)計(jì)圖中A組部分所對(duì)應(yīng)的扇形圓心角度數(shù);

3)若當(dāng)天該校進(jìn)行居家線上學(xué)習(xí)的學(xué)生數(shù)為1300人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DRtABC斜邊AB的中點(diǎn),點(diǎn)E在邊AC上.△A'B′C′與△ABC關(guān)于直線BE對(duì)稱,連結(jié)A′C.且∠CA′C'90°.若AC4BC3.則AE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(﹣14),B(﹣40),C(﹣1,0).

1A1B1C1ABC關(guān)于原點(diǎn)O對(duì)稱,畫出A1B1C1并寫出點(diǎn)A1的坐標(biāo);

2A2B2C2ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的,畫出A2B2C2并寫出點(diǎn)A2的坐標(biāo);

3)連接OA、OA2,在△ABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2的過程中,計(jì)算A變換到A2過程中的路徑是多少?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長(zhǎng)、寬均為3,高為8的長(zhǎng)方體容器,放置在水平桌面上,里面盛有水,水面高為6,繞底面一棱長(zhǎng)進(jìn)行旋轉(zhuǎn)傾斜后,水面恰好觸到容器口邊緣,圖2是此時(shí)的示意圖,則圖2中水面高度為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,點(diǎn)C為⊙O外一點(diǎn),COOA,交AB于點(diǎn)P,連接BC,BC=PC

(1)求證:BC是⊙O的切線;

(2)若⊙O的半徑為3,OP=1,求PC的長(zhǎng).

(3)在(2)的條件下,求BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC10tanA,點(diǎn)O是線段AC上一動(dòng)點(diǎn)(不與點(diǎn)A,點(diǎn)C重合),以OC為半徑的⊙O與線段BC的另一個(gè)交點(diǎn)為D,作DEABE

1)求證:DE是⊙O的切線;

2)當(dāng)⊙OAB相切于點(diǎn)F時(shí),求⊙O的半徑;

3)在(2)的條件下,連接OBDE于點(diǎn)M,點(diǎn)G在線段EF上,連接GO.若∠GOM45°,求DMFG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案