【題目】如圖,在ABC中,∠ABC=45°,CDAB于點(diǎn)D,BEAC于點(diǎn)E,BECD交于點(diǎn)F。

1)求證:ACD≌△FBD。

2)若AB=5,AD=1,求BF的長(zhǎng)。

【答案】1)見(jiàn)解析;(2

【解析】

1)由等腰直角三角形的性質(zhì)推出BD=CD,再由等角的余角相等求得 ACD=FBD ,于是根據(jù)角邊角定理即可證明 ACDFBD全等.

2)由全等三角形對(duì)應(yīng)邊相等得出FD的長(zhǎng),于是在BFD中,利用勾股定理即可求出BF的長(zhǎng).

1)∵∠ABC=45°,CDAB,

∴∠CDB=CDA=90°

∴△CDB為等腰直角三角形

BD=CD

BEAC

∴∠CEF=FDB=90°

又∵∠CFE=BFD

∴∠ACD=FBD

ACDFBD

∴△ACD≌△FBD(ASA)

2)由(1)AD=FD=1,又AB=5

BD=4

RtBDF中,

BF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=﹣的圖象上,點(diǎn)D在反比例函數(shù)y=(k≠0)的圖象上,ADx軸,ABx軸于B,DCx軸于C,若OB=OC,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問(wèn)題:

1)這次知識(shí)競(jìng)賽共有多少名學(xué)生?

2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)小華參加了此次的知識(shí)競(jìng)賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,已知的垂直平分線交于點(diǎn),交于點(diǎn),連接.

1)若,則的度數(shù)是 ;

2)若的周長(zhǎng)是.

①求的長(zhǎng)度;

②若點(diǎn)為直線上一點(diǎn),請(qǐng)你直接寫(xiě)出周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】百子回歸圖是由 1,2,3,…,100 無(wú)重復(fù)排列而成的正方形數(shù)表,它是一部數(shù)化的澳門簡(jiǎn)史,中央四 “19 99 12 20”標(biāo)示澳門回歸日期,最后一行中間兩 “23 50”標(biāo)示澳門面積,…,同時(shí)它也是十階幻方, 其每行 10 個(gè)數(shù)之和、每列 10 個(gè)數(shù)之和、每條對(duì)角線10 個(gè)數(shù)之和均相等,則這個(gè)和為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B坐標(biāo)為(-3,0),點(diǎn)Ay軸正半軸上一點(diǎn),且AB=5,點(diǎn)Px軸上位于點(diǎn)B右側(cè)的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m0

1)點(diǎn)A的坐標(biāo)為( )

2)當(dāng)ABP是等腰三角形時(shí),求P點(diǎn)的坐標(biāo);

3)如圖2,過(guò)點(diǎn)PPEAB交線段AB于點(diǎn)E,連接OE.若點(diǎn)A關(guān)于直線OE的對(duì)稱點(diǎn)為A',當(dāng)點(diǎn)A'恰好落在直線PE上時(shí),BE=________(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四邊形ABCD中,∠ABC3CBD,∠ADC3CDB,∠C128°,則∠A的度數(shù)是( 。

A.60°B.76°C.77°D.78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)邊上,,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B是數(shù)軸上兩點(diǎn),點(diǎn)A對(duì)應(yīng)的數(shù)是-2,點(diǎn)B對(duì)應(yīng)的數(shù)是2. ABC是等邊三角形,DAB中點(diǎn). 點(diǎn)MAC邊上,且AM=3CM.

1)求CD長(zhǎng).

2)點(diǎn)PCD上的動(dòng)點(diǎn),確定點(diǎn)P使得PM+PA的值最小,并求出PM+PA的最小值.

3)過(guò)點(diǎn)M的直線與數(shù)軸交于點(diǎn)Q,且QM.點(diǎn)Q對(duì)應(yīng)的數(shù)是t,結(jié)合圖形直接寫(xiě)出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案