【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),另一動(dòng)點(diǎn)N同時(shí)從點(diǎn)B出發(fā),以1cm/s的速度沿著邊BA向點(diǎn)A運(yùn)動(dòng),到達(dá)點(diǎn)A停止運(yùn)動(dòng),設(shè)點(diǎn)M運(yùn)動(dòng)時(shí)間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )
A.
B.
C.
D.
【答案】A
【解析】解:由題可得,BN=x,
當(dāng)0≤x≤1時(shí),M在BC邊上,BM=3x,AN=3-x,則S△ANM= ANBM,
∴y= (3-x)3x= ,此時(shí)是一段開(kāi)口向上的拋物線,故C選項(xiàng)錯(cuò)誤;
當(dāng)1≤x≤2時(shí),M點(diǎn)在CD邊上,則
S△ANM= ANBC,
∴y= (3-x)3= ,此時(shí)是一條線段,故D選項(xiàng)錯(cuò)誤;
當(dāng)2≤x≤3時(shí),M在AD邊上,AM=9-3x,
∴S△ANM= AMAN,
∴y= (9-3x)(3-x)= (x-3)2 , 此時(shí)是一段開(kāi)口向上的拋物線,故B選項(xiàng)錯(cuò)誤;
故選A.
M到達(dá)A點(diǎn)的時(shí)間是3秒,N到達(dá)A點(diǎn)的時(shí)間也是3秒,即M,N兩點(diǎn)同時(shí)出發(fā)且同時(shí)停止,則N一直是在AB上運(yùn)動(dòng),即要分類討論點(diǎn)M在BC,CD,DA段時(shí)y與x的函數(shù)關(guān)系,根據(jù)三角形的面積= ×底×高,確定哪一條是高,哪一條是底,寫(xiě)出x取值范圍內(nèi),y關(guān)于x的函數(shù)關(guān)系,并排除相應(yīng)的選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某學(xué)校開(kāi)展“遠(yuǎn)是君山,磨礪意志,保護(hù)江豚,愛(ài)鳥(niǎo)護(hù)鳥(niǎo)”為主題的遠(yuǎn)足活動(dòng).已知學(xué)校與君山島相距24千米,遠(yuǎn)足服務(wù)人員騎自行車(chē),學(xué)生步行,服務(wù)人員騎自行車(chē)的平均速度是學(xué)生步行平均速度的2.5倍,服務(wù)人員與學(xué)生同時(shí)從學(xué)校出發(fā),到達(dá)君山島時(shí),服務(wù)人員所花時(shí)間比學(xué)生少用了3.6小時(shí),求學(xué)生步行的平均速度是多少千米/小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尤秀同學(xué)遇到了這樣一個(gè)問(wèn)題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
求證:a2+b2=5c2
該同學(xué)仔細(xì)分析后,得到如下解題思路:
先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來(lái),再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證
(1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫(xiě)出證明過(guò)程.
(2)利用題中的結(jié)論,解答下列問(wèn)題:在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)中,△ABC三個(gè)頂點(diǎn)坐標(biāo)為A(﹣ ,0)、B( ,0)、C(0,3).
(1)求△ABC內(nèi)切圓⊙D的半徑.
(2)過(guò)點(diǎn)E(0,﹣1)的直線與⊙D相切于點(diǎn)F(點(diǎn)F在第一象限),求直線EF的解析式.
(3)以(2)為條件,P為直線EF上一點(diǎn),以P為圓心,以2 為半徑作⊙P.若⊙P上存在一點(diǎn)到△ABC三個(gè)頂點(diǎn)的距離相等,求此時(shí)圓心P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更新果樹(shù)品種,某果園計(jì)劃新購(gòu)進(jìn)A、B兩個(gè)品種的果樹(shù)苗栽植培育,若計(jì)劃購(gòu)進(jìn)這兩種果樹(shù)苗共45棵,其中A種苗的單價(jià)為7元/棵,購(gòu)買(mǎi)B種苗所需費(fèi)用y(元)與購(gòu)買(mǎi)數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.
(1)求y與x的函數(shù)關(guān)系式;
(2)若在購(gòu)買(mǎi)計(jì)劃中,B種苗的數(shù)量不超過(guò)35棵,但不少于A種苗的數(shù)量,請(qǐng)?jiān)O(shè)計(jì)購(gòu)買(mǎi)方案,使總費(fèi)用最低,并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)數(shù)值轉(zhuǎn)換器.
(1)當(dāng)輸入x=25時(shí),求輸出的y的值;
(2)是否存在輸入x的值后,始終輸不出y的值?如果存在,請(qǐng)直接寫(xiě)出所有滿足要求的x值;如果不存在,請(qǐng)說(shuō)明理由;
(3)輸入一個(gè)兩位數(shù)x,恰好經(jīng)過(guò)三次取算術(shù)平方根才能輸出無(wú)理數(shù)y,則x=________(只填一個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解答題
(1)如圖(1)點(diǎn)P是正方形ABCD的邊CD上一點(diǎn)(點(diǎn)P與點(diǎn)C,D不重合),點(diǎn)E在BC的延長(zhǎng)線上,且CE=CP,連接BP,DE.求證:△BCP≌△DCE;
(2)直線EP交AD于F,連接BF,F(xiàn)C.點(diǎn)G是FC與BP的交點(diǎn). ①若CD=2PC時(shí),求證:BP⊥CF;
②若CD=nPC(n是大于1的實(shí)數(shù))時(shí),記△BPF的面積為S1 , △DPE的面積為S2 . 求證:S1=(n+1)S2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com