【題目】如圖,四邊形ABCD是正方形,△ADF按順時針方向旋轉一定角度后得到△ABE,

AF=4,AB=7.

(1)旋轉中心為______;旋轉角度為______;

(2)DE的長度為______;

(3)指出BEDF的位置關系如何?并說明理由.

【答案】(1)A,90°;(2)3;(3)BEDF,理由見解析.

【解析】(1)(2)利用旋轉的定義和性質即可得出答案;(3)利用旋轉證出△ABE≌△ADF,再通過全等三角形的性質、三角形內角和即可證出.

解:(1)旋轉中心為點A,旋轉角度為90°;

(2)DE=AD-AE=7-4=3;

(3)BEDF.理由如下:

延長BEDF交于點M

∵△ADF按順時針方向旋轉一定角度后得到ABE,

∴△ABE≌△ADF,

∴∠ABE=ADF,

∵∠ADF+F=180°-90°=90°,

∴∠ABE+F=90°,

即∠BMF=90°,∴BEDF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校籃球隊13名同學的身高如下表:

身高(cm)

175

180

182

185

188

人數(shù)(個)

1

5

4

2

1

則該;@球隊13名同學身高的眾數(shù)和中位數(shù)分別是( 。
A.182,180
B.180,180
C.180,182
D.188,182

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李老師為鍛煉身體一直堅持步行上下班.已知學校到李老師家總路程2000米.一天,李老師下班后,以45米/分的速度從學校往家走,走到離學校900米時,正好遇到一個朋友,停下來聊了半小時,之后以110米/分的速度走回了家.李老師回家過程中,離家的路程S(米)與所用時間t(分)之間的關系如圖所示.

(1)求ab、c的值;
(2)求李老師從學校到家的總時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD于Q,PQ=4,PE=1.

(1)求證:∠BPQ=60°(提示:利用三角形全等、外角的性質)
(2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全球氣候變暖導致-些冰川融化并消失,在冰川|消失12年后,一種低等植物苔蘚,就開始在巖石上生長每一個苔蘚都會長成近似的圓形,苔蘚的直徑和其生長年限近似地滿足如下的關系式:d=7 (t≥12),其中d表示苔蘚的直徑,單位是厘米,t代表冰川消失的時間(單位:年)。

(1)計算冰川消失16年后苔蘚的直徑為多少厘米?

(2)如果測得一些苔蘚的直徑是35厘米,問冰川約是在多少年前消失的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=6,點F是AB的中點,E為BC邊上一點,且EF⊥ED,連結DF,M為DF的中點,連結MA,ME.若AM⊥ME,則AE的長為( )

A.5
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,E為BC邊的中點,CD⊥AB,AB=2,AC=1,DE= ,則∠CDE+∠ACD=(
A.60°
B.75°
C.90°
D.105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

國際比賽的足球場長在100m110m之間,寬在64m75m之間,為了迎接2015年的亞洲杯,某地建設了一個長方形的足球場,其長是寬的1.5倍,面積是7560m2請你判斷這個足球場能用于國際比賽嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM= AD,點N是折線AB﹣BC上的一個動點.

(1)如圖1,當N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為
(2)當點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為;
②當點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當點A′落在對角線BD上時,如圖4,求 的值.

查看答案和解析>>

同步練習冊答案