【題目】若關(guān)于x的一元二次方程x22x+m0有兩個相等的實(shí)數(shù)根,則m的值是( 。

A.1B.0C.1D.2

【答案】C

【解析】

根據(jù)題意可得一元二次方程根的判別式值等于0,求出m即可.

解:∵關(guān)于x的一元二次方程x22x+m0有兩個相等的實(shí)數(shù)根,

∴△=b24ac=(﹣224×1×m44m0,

m1

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從邊長為a的大正方形紙板中挖去一個邊長為b的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙).那么通過計(jì)算兩個圖形陰影部分的面積,可以驗(yàn)證成立的公式為(
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)(x0)的圖象與直線y=x交于點(diǎn)M,AMB=90°,其兩邊分別與兩坐標(biāo)軸的正半軸交于點(diǎn)A,B,四邊形OAMB的面積為6.

(1)求k的值;

(2)點(diǎn)P在反比例函數(shù)(x0)的圖象上,若點(diǎn)P的橫坐標(biāo)為3,EPF=90°,其兩邊分別與x軸的正半軸,直線y=x交于點(diǎn)E,F(xiàn),問是否存在點(diǎn)E,使得PE=PF?若存在,求出點(diǎn)E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,且OA、OB的長滿足ABO的平分線交x軸于點(diǎn)C過點(diǎn)C作AB的垂線,垂足為點(diǎn)D,交y軸于點(diǎn)E.

(1)求線段AB的長;

(2)求直線CE的解析式;

(3)若M是射線BC上的一個動點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)P,使以A、B、M、P為頂點(diǎn)的四邊形是矩形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x2+2(m-3)x+16是完全平方式,則m的值等于(

A. 3 B. -5 C. -71 D. 7-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線與x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過C交x軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動點(diǎn)(不與B,D重合),PF⊥x軸于F,設(shè)四邊形OFPC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Q在x軸的正半軸上運(yùn)動,過Q作y軸的平行線,交直線l于M,交拋物線于N,連接CN,將△CMN沿CN翻轉(zhuǎn),M的對應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請求出Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形正確的是( )
A.4x﹣5=3x+2變形得4x﹣3x=﹣2+5
B.﹣3x=2變形得
C.3(x﹣1)=2(x+3)變形得3x﹣1=2x+6
D. 變形得4x﹣6=3x+18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a2+b+5=0,則代數(shù)式3a2+3b+10=0的值為(

A. 25 B. 5 C. -5 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙兩個體育用品商店出售乒乓球拍和乒乓球,球拍每塊價(jià)格為48元,乒乓球每個價(jià)格為2元,已知甲店制定的優(yōu)惠方法是買一塊球拍送6個乒乓球,乙店按總價(jià)的90%收費(fèi),某球隊(duì)需要買球拍4塊,乒乓球若干(不少于24個).
(1)當(dāng)購買多少個乒乓球時(shí),兩個商店的收費(fèi)一樣多?
(2)當(dāng)需要購買240個乒乓球時(shí),選擇哪家商店購買更優(yōu)惠?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案