某租憑公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每月需維護費150元,未租出的車每月需維護費50元.
(1)當每輛車的月租金定為3600元時,能租出______輛車(直接填寫答案);
(2)設每輛車的月租金為x(x≥3000)元,用含x的代數(shù)式填空:
(3)每輛車的月租金定為多少元時,租憑公司的月收益最大,最大月收益是多少元?
為租出的車輛數(shù)租出的車輛
所有未租出的車每月的維護費租出的車每輛的月收益
由題意得:
(1)88輛;
(2)
為租出的車輛數(shù)(x-3000)/50租出的車輛100-(x-3000)/50
所有未租出的車每月的維護費(x-3000)/50×50租出的車每輛的月收益x-150
(3)設每輛車的月租金為x元,月收益為W元,則W=(x-150)×(100-
x-3000
50
)-
x-3000
50
×50
=-
1
50
x2+162x-21000
∵-
1
50
<0,
∴W有最大值.
當x=-
162
2×(-
1
50
)
=4050時,W最大值=
4×(-
1
50
)×(-21000)-1622
4×(-
1
50
)
=307050
即每輛車的月租金定為4050元時,租賃公司的月收益最大,是307050元.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2cm/s的速度向點B移動,同時點Q由點B開始沿BC邊以1cm/s的速度向點C移動.
①移動開始后第t秒時,設S=PQ2(cm2),試寫出S與t之間的函數(shù)關系式,并寫出t的取值范圍;
②當S取得最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出R點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知直線y=-
1
2
x+1交坐標軸于A、B兩點,以線段AB為邊向上作正方形ABCD,過A、D、C作拋物線L1
(1)請直接寫出點C、D的坐標;
(2)求拋物線L1的解析式;
(3)若正方形以每秒
5
個長度單位的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設正方形在運動過程中落在x軸下方部分的面積為S.求S關于滑行時間t的函數(shù)關系式;
(4)在(3)的條件下,拋物線L1與正方形一起平移,同時停止,得到拋物線L2.兩拋物線的頂點分別為M、N,點P是x軸上一動點,點Q是拋物線L1上一動點,是否存在這樣的點P、Q,使得以M、N、P、Q為頂點的四邊形為平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義一種變換:平移拋物線F1得到拋物線F2,使F2經過F1的頂點A.設F2的對稱軸分別交F1,F(xiàn)2于點D,B,點C是點A關于直線BD的對稱點.

(1)如圖1,若F1:y=x2,經過變換后,得到F2:y=x2+bx,點C的坐標為(2,0),則:
①b的值等于______;
②四邊形ABCD為( 。
A、平行四邊形;B、矩形;C、菱形;D、正方形.
(2)如圖2,若F1:y=ax2+c,經過變換后,點B的坐標為(2,c-1),求△ABD的面積;
(3)如圖3,若F1:y=
1
3
x2-
2
3
x+
7
3
,經過變換后,AC=2
3
,點P是直線AC上的動點,求點P到點D的距離和到直線AD的距離之和的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c(a≠O)經過X軸上的兩點A(x1,0)、B(x2,0)和y軸上的點C(0,-
3
2
),⊙P的圓心P在y軸上,且經過B、C兩點,若b=
3
a,AB=2
3
,
(1)求拋物線的解析式;
(2)設D在拋物線上,且C,D兩點關于拋物線的對稱軸對稱,問直線BD是否經過圓心P,并說明理由;
(3)設直線BD交⊙P于另一點E,求經過E點的⊙P的切線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,⊙A的半徑為3,A點的坐標為(2,0),C、E分別是⊙A與y軸、x軸的交點,過C點作⊙A的切線BC交x軸于點B.
(1)求直線BC的解析式;
(2)若拋物線y=ax2+bx+c經過B、A兩點,且頂點在直線BC上,求此拋物線的頂點的坐標;
(3)在x軸上是否存在一點P,使△PCE和△CBE相似?若存在,請你求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在平面直角坐標系中,半徑為2
2
的⊙O′與y軸交于A、B兩點,與直線OC相切于點C,∠BOC=45°,BC⊥OC,垂足為C.
(1)判斷△ABC的形狀;
(2)在
BC
上取一點D,連接DA、DB、DC,DA交BC于點E.求證:BD•CD=AD•ED;
(3)延長BC交x軸于點G,求經過O、C、G三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=x2-2x+a與直線y=x+1有兩個公共點A(x1,y1),B(x2,y2),且x2>x1≥0.
(1)求拋物線的對稱軸,并在所給坐標系中畫出對稱軸和直線y=x+1;
(2)試求a的取值范圍;
(3)若AE⊥x,E為垂足,BF⊥x軸,F(xiàn)為垂足,試求S梯形ABFE的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖(1),矩形ABCD的一邊BC在直角坐標系中x軸上,折疊邊AD,使點D落在x軸上點F處,折痕為AE,已知AB=8,AD=10,并設點B坐標為(m,0),其中m>0.
(1)求點E、F的坐標(用含m的式子表示);
(2)連接OA,若△OAF是等腰三角形,求m的值;
(3)如圖(2),設拋物線y=a(x-m-6)2+h經過A、E兩點,其頂點為M,連接AM,若∠OAM=90°,求a、h、m的值.

查看答案和解析>>

同步練習冊答案