【題目】如圖,已知BE平分∠ABD,DE平分∠BDC且∠EBDEDB90°.

(1)試說明:ABCD;

(2)HBE的延長(zhǎng)線與直線CD的交點(diǎn),BI平分∠HBD,寫出∠EBI與∠BHD的數(shù)量關(guān)系,并說明理由

【答案】(1)詳見解析;(2)∠EBIBHD,理由詳見解析.

【解析】試題分析:(1)根據(jù)角平分線的定義可得∠ABD=2∠EBD,∠BDC=2∠BDE,然后求出∠ABD+∠BDC=180°,再根據(jù)同旁內(nèi)角互補(bǔ),兩直線平行證明;
(2)ABCD,得到ABHBHD,再由BI平分EBD,BH平分ABD,即可得出結(jié)論

試題解析:

(1)證明:∵BE平分∠ABD,DE平分∠BDC,
∴∠ABD=2∠EBD,∠BDC=2∠BDE,
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2×90°=180°,
∴AB∥CD;
(2)∠EBIBHD. 理由如下

因?yàn)?/span>ABCD,

所以∠ABHBHD.

因?yàn)?/span>BI平分∠EBD,BH平分∠ABD

所以∠EBIEBDABHBHD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陳老師要為他家的長(zhǎng)方形餐廳(如圖1)選擇一張餐桌,并且想按如下要求擺放:餐桌一側(cè)靠墻,靠墻對(duì)面的桌邊留出寬度不小于80 cm的通道,另兩邊各留出寬度不小于60 cm的通道.那么在圖2的四張餐桌中,其規(guī)格符合要求的餐桌編號(hào)是________

1                2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點(diǎn)D是⊙O上的一點(diǎn),點(diǎn)C是 的中點(diǎn),弦CM垂直AB于點(diǎn)F,連接AD,交CF于點(diǎn)P,連接BC,∠DAB=30°.

(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長(zhǎng)度.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市今年中考理、化實(shí)驗(yàn)操作考試,采用學(xué)生抽簽方式?jīng)Q定自己的考試內(nèi)容.規(guī)定:每位考生必須在三個(gè)物理實(shí)驗(yàn)(用紙簽A、B、C表示)和三個(gè)化學(xué)實(shí)驗(yàn)(用紙簽D、E、F表示)中各抽取一個(gè)進(jìn)行考試,小剛在看不到紙簽的情況下,分別從中各隨機(jī)抽取一個(gè).
(1)用“列表法”或“樹狀圖法”表示所有可能出現(xiàn)的結(jié)果;
(2)小剛抽到物理實(shí)驗(yàn)B和化學(xué)實(shí)驗(yàn)F(記作事件M)的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:

(1)此次抽查的學(xué)生數(shù)為人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)從抽查的學(xué)生中隨機(jī)詢問一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是;
(3)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知 A (4,n), B (2,-4)是一次函數(shù) ykx+b的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;

(2)求直線 AB 與 x 軸的交點(diǎn) C 的坐標(biāo)及△ AOB 的面積;

(3)求方程 kx+b-=0的解(請(qǐng)直接寫出答案);

(4)求不等式 kx+b-<0的解集(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(1)-13×-0.34××(-13)-×0.34;

(2)31×41-11×41×2-9.5×11.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浠水縣商場(chǎng)某柜臺(tái)銷售每臺(tái)進(jìn)價(jià)分別為160元、120元的A、B兩種型號(hào)的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

4臺(tái)

1200

第二周

5臺(tái)

6臺(tái)

1900

(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

(2)若商場(chǎng)準(zhǔn)備用不多于7500元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共50臺(tái),求A種型號(hào)的電風(fēng)扇最多能采購(gòu)多少臺(tái)?

(3)在(2)的條件下,商場(chǎng)銷售完這50臺(tái)電風(fēng)扇能否實(shí)現(xiàn)利潤(rùn)超過1850元的目標(biāo)?若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)有理數(shù)的乘法后,老師給同學(xué)們這樣一道題目:計(jì)算:49×(﹣5),看誰算的又快又對(duì),有兩位同學(xué)的解法如下:

小明:原式=﹣×5=﹣=﹣249;

小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;

(1)對(duì)于以上兩種解法,你認(rèn)為誰的解法較好?

(2)上面的解法對(duì)你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請(qǐng)把它寫出來;

(3)用你認(rèn)為最合適的方法計(jì)算:19×(﹣8)

查看答案和解析>>

同步練習(xí)冊(cè)答案