【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
【答案】
(1)證明:連接OB,如圖所示:
∵AC是⊙O的直徑,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切線
(2)解:∵⊙O的半徑為2 ,
∴OB=2 ,AC=4 ,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴ ,
即 ,
∴BC=2
【解析】(1)連接OB,由圓周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,證出∠PBA+∠OBA=90°,即可得出結(jié)論;(2)證明△ABC∽△PBO,得出對應邊成比例,即可求出BC的長.
科目:初中數(shù)學 來源: 題型:
【題目】(背景)某班在一次數(shù)學實踐活動中,對矩形紙片進行折疊實踐操作,并將其產(chǎn)生的數(shù)學問題進行相關(guān)探究. (操作)如圖,在矩形ABCD中,AD=6,AB=4,點P是BC邊上一點,現(xiàn)將△APB沿AP對折,得△APM,顯然點M位置隨P點位置變化而發(fā)生改變
(問題)試求下列幾種情況下:點M到直線CD的距離
(1)∠APB=75°;
(2)P與C重合;
(3)P是BC的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知A點從(1,0)點出發(fā),以每秒1個單位長的速度沿著x軸的正方向運動,經(jīng)過t秒后,以O、A為頂點作菱形OABC,使B、C點都在第一象限內(nèi),且∠AOC=60°,又以P(0,4)為圓心,PC為半徑的圓恰好與OA所在的直線相切,則t= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個機器人從數(shù)軸原點出發(fā),沿數(shù)軸正方向,以每前進3步后退2步的程序運動。設該機器人每秒前進或后退1步,并且每步的距離為一個單位長度,表示第n秒時機器人在數(shù)軸上位置所對應的數(shù)。則下列結(jié)論中正確的有______.(只需填入正確的序號)
① ② ③ ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點E在△ABC內(nèi),∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)當α=60°時(如圖1), ①判斷△ABC的形狀,并說明理由;
②求證:BD= AE;
(2)當α=90°時(如圖2),求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是( )
A. ②④ B. ①③ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過點A作BC的平行線交與BE的延長線于點F,且AF=DC,連結(jié)CF.
(1)求證:四邊形ADCF是平行四邊形;
(2)當AB與AC有何數(shù)量關(guān)系時,四邊形ADCF為矩形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)的序號填到相應的橫線上:
①+5,②-3,③0,④-1.414,⑤17,⑥-.
正整數(shù):______________________________________________________;
負分數(shù):______________________________________________________;
負有理數(shù):____________________________________________________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com