【題目】某同學(xué)在利用描點(diǎn)法畫(huà)二次函數(shù)y=ax2+bx+c(a=0)的圖象時(shí),先取自變量x的一些值,計(jì)算出相應(yīng)的函數(shù)值y,如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | ﹣3 | 0 | ﹣1 | 0 | 3 | … |
接著,他在描點(diǎn)時(shí)發(fā)現(xiàn),表格中有一組數(shù)據(jù)計(jì)算錯(cuò)誤,他計(jì)算錯(cuò)誤的一組數(shù)據(jù)是( 。
A.B.C.D.
【答案】A
【解析】
利用表中數(shù)據(jù)和二次函數(shù)的性質(zhì)得到拋物線的對(duì)稱(chēng)軸為直線x=2,則頂點(diǎn)坐標(biāo)為(2,﹣1),于是可判斷拋物線的開(kāi)口向上,則x=0和x=4的函數(shù)值相等且大于0,然后可判斷A選項(xiàng)錯(cuò)誤.
∵x=1和x=3時(shí),y=0;
∴拋物線的對(duì)稱(chēng)軸為直線x=2,
∴頂點(diǎn)坐標(biāo)為(2,﹣1),
∴拋物線的開(kāi)口向上,
∴x=0和x=4的函數(shù)值相等且大于0,
∴x=0,y=﹣3錯(cuò)誤.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,菱形AOBC的頂點(diǎn)B在y軸上,頂點(diǎn)A在反比例函數(shù)y=的圖象上,邊AC,OA分別交反比例函數(shù)y=的圖象于點(diǎn)D,點(diǎn)E,邊AC交x軸于點(diǎn)F,連接CE.已知四邊形OBCE的面積為12,sin∠AOF= ,則k的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題)用n個(gè)2×1矩形,鑲嵌一個(gè)2×n矩形,有多少種不同的鑲嵌方案?(2×n矩形表示矩形的鄰邊是2和n)
(探究)不妨假設(shè)有an種不同的鑲嵌方案.為探究an的變化規(guī)律,我們采取一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.
探究一:用1個(gè)2×1矩形,鑲嵌一個(gè)2×1矩形,有多少種不同的鑲嵌方案?
如圖(1),顯然只有1種鑲嵌方案.所以,a1=1.
探究二:用2個(gè)2×1矩形,鑲嵌一個(gè)2×2矩形,有多少種不同的鑲嵌方案?
如圖(2),顯然只有2種鑲嵌方案.所以,a2=2.
探究三:用3個(gè)2×1矩形,鑲嵌一個(gè)2×3矩形,有多少種不同的鑲嵌方案?
一類(lèi):在探究一每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有1種鑲嵌方案;
二類(lèi):在探究二每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有2種鑲嵌方案;
如圖(3).所以,a3=1+2=3.
探究四:用4個(gè)2×1矩形,鑲嵌一個(gè)2×4矩形,有多少種不同的鑲嵌方案?
一類(lèi):在探究二每個(gè)鑲嵌圖的右側(cè)再橫著鑲嵌2個(gè)2×1矩形,有 種鑲嵌方案;
二類(lèi):在探究三每個(gè)鑲嵌圖的右側(cè)再豎著鑲嵌1個(gè)2×1矩形,有 種鑲嵌方案;
所以,a4= .
探究五:用5個(gè)2×1矩形,鑲嵌一個(gè)2×5矩形,有多少種不同的鑲嵌方案?
(仿照上述方法,寫(xiě)出探究過(guò)程,不用畫(huà)圖)
……
(結(jié)論)用n個(gè)2×1矩形,鑲嵌一個(gè)2×n矩形,有多少種不同的鑲嵌方案?
(直接寫(xiě)出an與an﹣1,an﹣2的關(guān)系式,不寫(xiě)解答過(guò)程).
(應(yīng)用)用10個(gè)2×1矩形,鑲嵌一個(gè)2×10矩形,有 種不同的鑲嵌方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)等腰直角三角形放在平面直角坐標(biāo)系中,∠ACB=90°,點(diǎn)C(-1,0),點(diǎn)B在反比例函數(shù)的圖像上,且y軸平分∠BAC,則k的值是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:把叫做函數(shù)的伴隨函數(shù).比如:就是的伴隨函數(shù).?dāng)?shù)形結(jié)合是學(xué)習(xí)函數(shù)的一種重要方法,對(duì)于二次函數(shù)(的常數(shù)),若點(diǎn)在函數(shù)的圖像上,則點(diǎn)(,)也在其圖像上,即從數(shù)的角度可以知道它的圖像關(guān)于軸對(duì)稱(chēng).解答下列問(wèn)題:
(1)的圖像關(guān)于 軸對(duì)稱(chēng);
(2)①直接寫(xiě)出函數(shù)的伴隨函數(shù)的表達(dá)式 ;
②在如圖①所示的平面直角坐標(biāo)系中畫(huà)出的伴隨函數(shù)的大致圖像;
(3)若直線與的伴隨函數(shù)圖像交于、兩點(diǎn)(點(diǎn)A在點(diǎn)B的上方),連接、,且△ABO的面積為12,求的值;
(4)若直線(不平行于y軸)與(的常數(shù))的伴隨函數(shù)圖像交于、兩點(diǎn)(點(diǎn)、分別在第一、四象限),且,試問(wèn)、兩點(diǎn)的縱坐標(biāo)的積是否為常數(shù)?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)求證:無(wú)論為任何實(shí)數(shù),此方程總有兩個(gè)實(shí)數(shù)根;
(2)若方程的兩個(gè)實(shí)數(shù)根為、,滿足,求的值;
(3)若△的斜邊為5,另外兩條邊的長(zhǎng)恰好是方程的兩個(gè)根、,求的內(nèi)切圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有五張完全相同的卡片,正面分別畫(huà)有平行四邊形、等邊三角形、正五邊形、矩形、圓,將它們打亂順序后背面向上,從中隨機(jī)選取一張卡片,正面圖形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)是弧上一點(diǎn),且,與交與點(diǎn).
(1)求證:是的切線;
(2)若平分,求證:;
(3)在(2)的條件下,延長(zhǎng),交于點(diǎn),若,,求的長(zhǎng)和的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)是我國(guó)的傳統(tǒng)節(jié)日,人們素有吃粽子的習(xí)俗,某商場(chǎng)在端午節(jié)來(lái)臨之際用3000元購(gòu)進(jìn)、兩種粽子1100個(gè),購(gòu)買(mǎi)種粽子與購(gòu)買(mǎi)種粽子的費(fèi)用相同,已知粽子的單價(jià)是種粽子單價(jià)的1.2倍.
(1)求、兩種粽子的單價(jià)各是多少?
(2)若計(jì)劃用不超過(guò)7000元的資金再次購(gòu)買(mǎi)、兩種粽子共2600個(gè),已知、兩種粽子的進(jìn)價(jià)不變,求中粽子最多能購(gòu)進(jìn)多少個(gè)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com