【題目】(1)如圖,給出了過直線外一點作已知直線的平行線的方法,其依據(jù)是 .
(2)如圖,四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,則BE與DF有何位置關(guān)系?試說明理由.
【答案】(1)同位角相等,兩直線平行(2)BE∥DF,理由見解析
【解析】
(1)根據(jù)圖形的特點及平行線的判定定理即可求解;
(2)根據(jù)四邊形的內(nèi)角和定理和∠A=∠C=90°,得∠ABC+∠ADC=180°;根據(jù)角平分線定義、等角的余角相等易證明和BE與DF兩條直線有關(guān)的一對同位角相等,從而證明兩條直線平行.
(1)圖中給出了過直線外一點作已知直線的平行線的方法,其依據(jù)是:同位角相等,兩直線平行
故答案為:同位角相等,兩直線平行;
(2)BE∥DF.理由如下:
∵∠A=∠C=90°
∴∠ABC+∠ADC=360°-∠A-∠C =180°
∵BE平分∠ABC,DF平分∠ADC,
∴∠1=∠2=∠ABC,∠3=∠4=∠ADC
∴∠1+∠3=(∠ABC+∠ADC)=×180°=90°
又∠1+∠AEB=90°
∴∠3=∠AEB
∴BE∥DF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖.已知曲線是由頂點為T的二次函數(shù) 的圖象旋轉(zhuǎn)45度得到,直線AB: 交曲線于C,D兩點.
(1)線段AT長為,
(2)在y軸上有一點P,且PC+PD 為最小,則點P的坐標為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,王老師拿出一張如圖 1 所示的長方形 紙(對邊,四個角都是直角), 要求同學們用直尺和量角器在 AB 邊上找一點 E,使.
(1)甲同學的做法:在邊上任取一點,以 為頂點,以 為一邊,用量角器作 角,使另外一邊經(jīng)過點 C,則 即為所求.
(2)乙同學的做法:以為始邊,在長方形的內(nèi)部,利用量角器作,射線 與 交于點,則如圖 2 所示 即為所求.
你支持_______同學的做法,作圖依據(jù)是__________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填寫推理理由:
如圖,CD∥EF,∠1=∠2,求證:∠3=∠ACB.
證明:∵CD∥EF,
∴∠DCB=∠2( ),
∵∠1=∠2,
∴∠DCB=∠1( ).
∴GD∥CB( ),
∴∠3=∠ACB( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖
(1)若∠2=∠3,則 ∥ ,理由是 .
(2)若∠3=∠4,則 ∥ ,理由是 .
(3)若m∥n,則∠1與∠4的關(guān)系是 ,理由是 .
(4)若∠1+∠2=180°,則 ∥ ,理由是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在Rt△ABC和Rt△ADE中,∠BAC=90°,∠DAE=90°,AB=AC,AD=AE,CE與BD相交于點M,BD與AC交于點N,試猜想BD與CE有何關(guān)系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商人制成了一個如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費2元,若指針指向字母“B”,則獎勵3元;若指針指向字母“C”,則獎勵1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com