在等腰△ABC中,∠ACB=90°,且AC=1.過(guò)點(diǎn)C作直線l∥AB,P為直線l上一點(diǎn),且AP=AB.則點(diǎn)P到BC所在直線的距離是
A.1
B.1或
C.1或
D.
D

分析:分點(diǎn)P與點(diǎn)A在BC同側(cè)和異側(cè)兩種情況討論:
①若點(diǎn)P與點(diǎn)A在BC同側(cè),如圖,延長(zhǎng)BC,作PD⊥BC,交點(diǎn)為D,延長(zhǎng)CA,作PE⊥CA于點(diǎn)E,
∵CP∥AB,∴∠PCD=∠CBA=45°!嗨倪呅蜟DPE是正方形。
∴CD=DP=PE=EC。
在等腰Rt△ABC中,AC=BC=1,AB=AP,∴。∴AP=。
在Rt△AEP中,,即。解得,PD=。
②若點(diǎn)P與點(diǎn)A在BC異側(cè),如圖,延長(zhǎng)AC,做PD⊥BC交點(diǎn)為D,PE⊥AC,交點(diǎn)為E,

∵CP∥AB,∴∠PCD=∠CBA=45°!嗨倪呅蜟DPE是正方形。
∴CD=DP=PE=EC。
∵在等腰Rt△ABC中,AC=BC=1,AB=AP,
!郃P=。
∴在Rt△AEF中,
解得,DP=。
故選D。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將一個(gè)寬度相等的紙條沿AB折疊一下,如果∠1=130º,那么∠2=     
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把命題“垂直于同一條直線的兩條直線平行”改寫(xiě)成“如果……,那么……”的形式是______________________________________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,下列條件中,可以判斷AB∥CD的是 (    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

連接一個(gè)幾何圖形上任意兩點(diǎn)間的線段中,最長(zhǎng)的線段稱為這個(gè)幾何圖形的直徑,根據(jù)此定義,圖(扇形、菱形、直角梯形、紅十字圖標(biāo))中“直徑”最小的是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖是潛望鏡工作原理示意圖,陰影部分是平行放置在潛望鏡里的兩面鏡子.已知光線經(jīng)過(guò)鏡子反射時(shí),有∠1=∠2,∠3=∠4,請(qǐng)解釋進(jìn)入潛望鏡的光線l為什么和離開(kāi)潛望鏡的光線m是平行的?(請(qǐng)把思考過(guò)程補(bǔ)充完整)

理由:
因?yàn)椋篈B∥CD(已知),
所以:∠2=∠3(                        ).
因?yàn)椋骸?=∠2,∠3=∠4(已知).
所以:∠1=∠2=∠3=∠4(等量代換).
所以:180°-∠1-∠2=180°-∠3-∠4(平角定義).
即:___________(等量代換).
所以:__________(                            ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系x、y中,過(guò)原點(diǎn)O及點(diǎn)A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點(diǎn)D.點(diǎn)P從點(diǎn)O出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿射線OD方向移動(dòng);同時(shí)點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸正方向移動(dòng).設(shè)移動(dòng)時(shí)間為t秒.

(1)當(dāng)點(diǎn)P移動(dòng)到點(diǎn)D時(shí),求出此時(shí)t的值;
(2)當(dāng)t為何值時(shí),△PQB為直角三角形;
(3)已知過(guò)O、P、Q三點(diǎn)的拋物線解析式為(t>0).問(wèn)是否存在某一時(shí)刻t,將△PQB繞某點(diǎn)旋轉(zhuǎn)180°后,三個(gè)對(duì)應(yīng)頂點(diǎn)恰好都落在上述拋物線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,∠1=∠2,∠3+∠DCB=180°,∠CME:∠GEM=4:5,求∠CME的度數(shù)。
                     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2013年浙江義烏4分)把角度化為度、分的形式,則20.5°=20°     ­­′;

查看答案和解析>>

同步練習(xí)冊(cè)答案