【題目】如圖,在中,,以為直徑作圓,分別交于點,交的延長線于點,過點于點,連接交線段于點

1)求證:是圓的切線;

2)若的中點,求的值;

3)若,求圓的半徑.

【答案】1)見解析;(2;(3

【解析】

(1)根據(jù)同圓的半徑相等和等邊對等角證明:∠ODB=OBD=ACB,則DHOD,DH是圓O的切線;
2)如圖2,先證明∠E=B=C,則HEC的中點,設AE=x,EC=4x,則AC=3x,由ODABC的中位線,得:,證明AEF∽△ODF,列比例式可得結論;
3)如圖2,設⊙O的半徑為r,即OD=OB=r,證明DF=OD=r,則DE=DF+EF=r+1,BD=CD=DE=r+1,證明BFD∽△EFA,列比例式為:,則,求出r的值即可.

證明:(1)連接 如圖1所示

是等腰三角形

又在

由①②得:

是圓的切線

(2)如圖2,在圓中,

∴由(1)可知:,

是等腰三角形,

, 且點中點,

,,則,

連接 則在圓中,,

,

的中點,

的中位線,

,

,

中,

,

,

,

(3)如圖2,設的半徑為,即,

,

,

,

,

,

,

中,,

,是等腰三角形,

,

,

中,

,

,

解得: , ()

綜上所述, 的半徑為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,函數(shù)y=x>0)的圖象與直線y=x+1交于點A2,m).

1)求km的值;

2)已知點Pn0),過點P作平行于 y 軸的直線,交直線y=x+1于點B,交函數(shù)y=x>0)的圖象于點C.若y=x>0)的圖象在點AC之間的部分與線段ABBC所圍成的區(qū)域內(不包括邊界),記作圖形G.橫、縱坐標都是整數(shù)的點叫做整點.

①當n=4時,直接寫出圖形G的整點坐標;

②若圖形G 恰有2 個整點,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學嘗試用自己所學的知識檢測車速,如圖,觀測點設在到縣城城南大道的距離為米的點處.這時,一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時間為秒,且,

、之間的路程;

請判斷此出租車是否超過了城南大道每小時千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+3與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一個交點為C.

(1)求拋物線的解析式;

(2)點P是第一象限拋物線上的點,連接OP交直線AB于點Q.設點P的橫坐標為m,PQ與OQ的比值為y,求y與m的關系式,并求出PQ與OQ的比值的最大值;

(3)點D是拋物線對稱軸上的一動點,連接OD、CD,設ODC外接圓的圓心為M,當sinODC的值最大時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點A4,0)和點D-1,0),與y軸交于點C,過點CBC平行于x軸交拋物線于點B,連接AC
1)求這個二次函數(shù)的表達式;
2)點M從點O出發(fā)以每秒2個單位長度的速度向點A運動;點N從點B同時出發(fā),以每秒1個單位長度的速度向點C運動,其中一個動點到達終點時,另一個動點也隨之停動,過點NNQ垂直于BCAC于點Q,連結MQ
①求△AQM的面積S與運動時間t之間的函數(shù)關系式,寫出自變量的取值范圍;當t為何值時,S有最大值,并求出S的最大值;
②是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將RtABC繞直角頂點A,沿順時針方向旋轉后得到RtAB1C1,當點B1恰好落在斜邊BC的中點時,則∠B1AC=(

A.25°B.30°C.40°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;

(3當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案