【題目】如圖,在中,,以為直徑作圓,分別交于點,交的延長線于點,過點作于點,連接交線段于點.
(1)求證:是圓的切線;
(2)若為的中點,求的值;
(3)若,求圓的半徑.
【答案】(1)見解析;(2);(3)
【解析】
(1)根據(jù)同圓的半徑相等和等邊對等角證明:∠ODB=∠OBD=∠ACB,則DH⊥OD,DH是圓O的切線;
(2)如圖2,先證明∠E=∠B=∠C,則H是EC的中點,設AE=x,EC=4x,則AC=3x,由OD是△ABC的中位線,得:,證明△AEF∽△ODF,列比例式可得結論;
(3)如圖2,設⊙O的半徑為r,即OD=OB=r,證明DF=OD=r,則DE=DF+EF=r+1,BD=CD=DE=r+1,證明△BFD∽△EFA,列比例式為:,則,求出r的值即可.
證明:(1)連接 如圖1所示
是等腰三角形
又在中
由①②得:
是圓的切線
(2)如圖2,在圓中,
,
∴由(1)可知:,
是等腰三角形,
, 且點是中點,
設,,則,
連接, 則在圓中,, ,
,
是的中點,
是的中位線,
,
,
在和中,
,,
,
,
(3)如圖2,設的半徑為,即,
,
,
,
,
則,
,
,
,
在中,,
,
,是等腰三角形,
,
,
在和中,
,
,
解得: , (舍)
綜上所述, 的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,函數(shù)y=(x>0)的圖象與直線y=x+1交于點A(2,m).
(1)求k、m的值;
(2)已知點P(n,0),過點P作平行于 y 軸的直線,交直線y=x+1于點B,交函數(shù)y=(x>0)的圖象于點C.若y=(x>0)的圖象在點A、C之間的部分與線段AB、BC所圍成的區(qū)域內(不包括邊界),記作圖形G.橫、縱坐標都是整數(shù)的點叫做整點.
①當n=4時,直接寫出圖形G的整點坐標;
②若圖形G 恰有2 個整點,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小明和三位同學嘗試用自己所學的知識檢測車速,如圖,觀測點設在到縣城城南大道的距離為米的點處.這時,一輛出租車由西向東勻速行駛,測得此車從處行駛到處所用的時間為秒,且,.
求、之間的路程;
請判斷此出租車是否超過了城南大道每小時千米的限制速度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經(jīng)過A、B兩點,與x軸的另一個交點為C.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的點,連接OP交直線AB于點Q.設點P的橫坐標為m,PQ與OQ的比值為y,求y與m的關系式,并求出PQ與OQ的比值的最大值;
(3)點D是拋物線對稱軸上的一動點,連接OD、CD,設△ODC外接圓的圓心為M,當sin∠ODC的值最大時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點A(4,0)和點D(-1,0),與y軸交于點C,過點C作BC平行于x軸交拋物線于點B,連接AC
(1)求這個二次函數(shù)的表達式;
(2)點M從點O出發(fā)以每秒2個單位長度的速度向點A運動;點N從點B同時出發(fā),以每秒1個單位長度的速度向點C運動,其中一個動點到達終點時,另一個動點也隨之停動,過點N作NQ垂直于BC交AC于點Q,連結MQ
①求△AQM的面積S與運動時間t之間的函數(shù)關系式,寫出自變量的取值范圍;當t為何值時,S有最大值,并求出S的最大值;
②是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點A,沿順時針方向旋轉后得到Rt△AB1C1,當點B1恰好落在斜邊BC的中點時,則∠B1AC=( )
A.25°B.30°C.40°D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P時直線AC下方拋物線上的動點.
(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com