已知C是直線AB上一點,且,那么下列結(jié)論中,正確的是( )
A.
B.
C.
D.
【答案】分析:根據(jù)C是直線AB上一點,且,可知方向相同,但長度是其的一半,故可判斷的關(guān)系.
解答:解:∵C是直線AB上一點,且,
方向相同,||=||,
又點A、B和C在同一直線上,
=-
故選A.
點評:本題考查了平面向量的知識,屬于基礎(chǔ)題,注意根據(jù)題意判斷A、B及C點的位置是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE.
(1)如圖1,若∠COF=34°,則∠BOE=
 
;若∠COF=n°,則∠BOE=
 
;∠BOE與∠COF的數(shù)量關(guān)系為
 

(2)當(dāng)射線OE繞點O逆時針旋轉(zhuǎn)到如圖2的位置時,(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?如成立請寫出關(guān)系式;如不成立請說明理由.
(3)在圖3中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013年四川成都成華區(qū)七年級上學(xué)期半期考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知O為直線AB上的一點,∠COE是直角, OF 平分∠AOE.

(1)如圖①,若∠COF=34°,則∠BOE=      °;若∠COF=m°,則∠BOE=      °;由上面的解答可知:∠BOE與∠COF之間的數(shù)量關(guān)系應(yīng)該為                
(2)如圖②,(1)中∠BOE與∠COF之間的數(shù)量關(guān)系是否仍然成立?若成立,請給予證明;若不成立,請說明理由.
(3)如圖③,在(2)的情況下,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆四川成都成華區(qū)七年級上學(xué)期半期考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知O為直線AB上的一點,∠COE是直角, OF 平分∠AOE.

(1)如圖①,若∠COF=34°,則∠BOE=      °;若∠COF=m°,則∠BOE=      °;由上面的解答可知:∠BOE與∠COF之間的數(shù)量關(guān)系應(yīng)該為                

(2)如圖②,(1)中∠BOE與∠COF之間的數(shù)量關(guān)系是否仍然成立?若成立,請給予證明;若不成立,請說明理由.

(3)如圖③,在(2)的情況下,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知O為直線AB上的一點,∠COE是直角,OF平分∠AOE.
(1)如圖1,若∠COF=34°,則∠BOE=______;若∠COF=n°,則∠BOE=______;∠BOE與∠COF的數(shù)量關(guān)系為______.
(2)當(dāng)射線OE繞點O逆時針旋轉(zhuǎn)到如圖2的位置時,(1)中∠BOE與∠COF的數(shù)量關(guān)系是否仍然成立?如成立請寫出關(guān)系式;如不成立請說明理由.
(3)在圖3中,若∠COF=65°,在∠BOE的內(nèi)部是否存在一條射線OD,使得2∠BOD與∠AOF的和等于∠BOE與∠BOD的差的一半?若存在,請求出∠BOD的度數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:山東省期末題 題型:解答題

如圖,已知O 是直線AB 上的一點,OC 是從點O 引出的一條射線,OD 是∠AOC 的平分線,OE 是∠COB 平分線。
(1 )若∠AOC=80 °,∠BOC=100 °求∠DOE 的度數(shù)。
(2 )若射線OC 在平角∠AOB 內(nèi)任意轉(zhuǎn)動,則∠DOE 的度數(shù)是否發(fā)生變化,說明理由。

查看答案和解析>>

同步練習(xí)冊答案