如圖,,若,則∠A等于

(A) 35°    (B) 55°      (C) 65°        (D) 125°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:等邊△ABC的邊長(zhǎng)為a.
探究(1):如圖1,過(guò)等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=
3
a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過(guò)點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=
3
2
a;結(jié)論2. AD+BE+CF=
3
2
a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南長(zhǎng)葛創(chuàng)新中學(xué)八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(帶解析) 題型:解答題

已知△ABC是等邊三角形,點(diǎn)P是AC上一點(diǎn),PE⊥BC于點(diǎn)E,交AB于點(diǎn)F,在CB的延長(zhǎng)線上截取BD=PA,PD交AB于點(diǎn)I,.
(1)如圖1,若,則=      =      ;

(2)如圖2,若∠EPD=60º,試求的值;

(3)如圖3,若點(diǎn)P在AC邊的延長(zhǎng)線上,且,其他條件不變,則=      .(只寫答案不寫過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆河南長(zhǎng)葛創(chuàng)新中學(xué)八年級(jí)上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知△ABC是等邊三角形,點(diǎn)P是AC上一點(diǎn),PE⊥BC于點(diǎn)E,交AB于點(diǎn)F,在CB的延長(zhǎng)線上截取BD=PA,PD交AB于點(diǎn)I,.

(1)如圖1,若,則=       =       ;

 

 

(2)如圖2,若∠EPD=60º,試求的值;

 

 

(3)如圖3,若點(diǎn)P在AC邊的延長(zhǎng)線上,且,其他條件不變,則=       .(只寫答案不寫過(guò)程)

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年遼寧省丹東市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:等邊△ABC的邊長(zhǎng)為a.
探究(1):如圖1,過(guò)等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過(guò)點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=a;結(jié)論2. AD+BE+CF=a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2009•莆田)已知:等邊△ABC的邊長(zhǎng)為a.
探究(1):如圖1,過(guò)等邊△ABC的頂點(diǎn)A、B、C依次作AB、BC、CA的垂線圍成△MNG,求證:△MNG是等邊三角形且MN=a;
探究(2):在等邊△ABC內(nèi)取一點(diǎn)O,過(guò)點(diǎn)O分別作OD⊥AB、OE⊥BC、OF⊥CA,垂足分別為點(diǎn)D、E、F.
①如圖2,若點(diǎn)O是△ABC的重心,我們可利用三角形面積公式及等邊三角形性質(zhì)得到兩個(gè)正確結(jié)論(不必證明):結(jié)論1. OD+OE+OF=a;結(jié)論2. AD+BE+CF=a;
②如圖3,若點(diǎn)O是等邊△ABC內(nèi)任意一點(diǎn),則上述結(jié)論1,2是否仍然成立?如果成立,請(qǐng)給予證明;如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案