【題目】如圖1,在三角形中,把繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,把繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,連接,過(guò)點(diǎn)的垂線,交于點(diǎn),交于點(diǎn).

(特例嘗試)如圖2,當(dāng)時(shí),

①求證:

②猜想的數(shù)量關(guān)系并說(shuō)明理由.

(理想論證)在圖1中,當(dāng)為任意三角形時(shí),②中的數(shù)量關(guān)系還成立嗎?請(qǐng)給予證明.

(拓展應(yīng)用)如圖3,直線軸,軸分別交于、兩點(diǎn),分別以,為直角邊在第二、一象限內(nèi)作等腰和等腰,連接,交軸于點(diǎn).試猜想的長(zhǎng)是否為定值,若是,請(qǐng)求出這個(gè)值;若不是,請(qǐng)說(shuō)明理由.

【答案】[特例嘗試]①見(jiàn)解析,②,理由見(jiàn)解析;[理想論證]成立,證明見(jiàn)解析;[拓展應(yīng)用]是定值,.

【解析】

[特例嘗試]①根據(jù)垂直的定義可得∠BAD=CAE=90°,用360°減去其它三個(gè)角即可證得;②根據(jù)旋轉(zhuǎn)的性質(zhì)易證BACDAE(SAS),然后根據(jù)全等三角形對(duì)應(yīng)邊相等可得BC=DE,根據(jù)全等三角形對(duì)應(yīng)角相等結(jié)合同角的余角相等可證∠DAG=EDA,根據(jù)等角對(duì)等邊可證DG=AG,同理證明GE=AG即可證明

[理想論證]過(guò)點(diǎn),延長(zhǎng)線于點(diǎn),過(guò)點(diǎn),于點(diǎn),通過(guò)證明三角形全等,根據(jù)全等三角形的性質(zhì)可證;

[拓展應(yīng)用]利用一次函數(shù)求得AO的長(zhǎng)度,結(jié)合[理想論證]可知.

[特例嘗試]①證明:∵BAAD,ACAE

∴∠BAD=CAE=90°,

又∵

,證明如下:

由旋轉(zhuǎn)的性質(zhì)可得AD=ABAE=AC

又∵

∴△BACDAE(SAS)

∴∠EDA=CBA,DEA=BCABC=DE,

GFBC

∴∠CAF+ACB=90°,∠ABC+ACB=90°

∴∠ABC=CAF=DAG=EDA,

DG=AG,

同理可證GE=AG,

.

[理想論證]成立,理由如下:

過(guò)點(diǎn),延長(zhǎng)線于點(diǎn),過(guò)點(diǎn),于點(diǎn).

,

,

同理可得,

[拓展應(yīng)用]對(duì)于一次函數(shù),當(dāng)y=0時(shí),即,

解得,

,

由題[理想論證]可知.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)概率時(shí),做投擲骰子(質(zhì)地均勻的正方體)試驗(yàn),他們共做了60次試驗(yàn),試驗(yàn)的結(jié)果如下:

(1)計(jì)算“3點(diǎn)朝上的頻率和“5點(diǎn)朝上的頻率.

(2)小穎說(shuō):根據(jù)上述試驗(yàn),一次試驗(yàn)中出現(xiàn)5點(diǎn)朝上的概率最大;小紅說(shuō):如果投擲600次,那么出現(xiàn)6點(diǎn)朝上的次數(shù)正好是100”.小穎和小紅的說(shuō)法正確嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,直線的解析式為,與軸,軸分別交于點(diǎn),點(diǎn),直線交于點(diǎn).

1)求點(diǎn),點(diǎn),點(diǎn)的坐標(biāo),并求出的面積;

2)若直線 上存在點(diǎn)(不與重合),滿足,請(qǐng)求出點(diǎn)的坐標(biāo);

3)在軸右側(cè)有一動(dòng)直線平行于軸,分別與,交于點(diǎn),且點(diǎn)在點(diǎn)的下方,軸上是否存在點(diǎn),使為等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出滿足條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxc(a0)的圖象如圖所示,給出以下結(jié)論:

因?yàn)?/span>a0,所以函數(shù)有最大值;

該函數(shù)圖象關(guān)于直線對(duì)稱;

當(dāng)時(shí),函數(shù)y的值大于0;

當(dāng)時(shí),函數(shù)y的值都等于0

其中正確結(jié)論的個(gè)數(shù)是

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】漢諾塔問(wèn)題是指有三根桿子和套在桿子上的若干大小不等的碟片,按下列規(guī)則,把碟片從一根桿子上全部移到另一根桿子上;

1)每次只能移動(dòng)1個(gè)碟片.

2)較大的碟片不能放在較小的碟片上面.

如圖所示,將1號(hào)桿子上所有碟片移到2號(hào)桿子上,3號(hào)桿可以作為過(guò)渡桿使用,稱將碟片從一根桿子移動(dòng)到另一根桿子為移動(dòng)一次,記將l號(hào)桿子上的個(gè)碟片移動(dòng)到2號(hào)桿子上最少需要次,則

A.31B.33C.63D.65

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下四個(gè)標(biāo)志中,是軸對(duì)稱圖形的是( )

A B C D

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是,點(diǎn)Cx軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)Cx軸上移動(dòng)時(shí),始終保持是等腰直角三角形(,點(diǎn)AC、P按逆時(shí)針?lè)较蚺帕校;?dāng)點(diǎn)C移動(dòng)到點(diǎn)O時(shí),得到等腰直角三角形(此時(shí)點(diǎn)P與點(diǎn)B重合).

(初步探究)

1)寫(xiě)出點(diǎn)B的坐標(biāo)________

2)點(diǎn)Cx軸上移動(dòng)過(guò)程中,作軸,垂足為點(diǎn)D,都有,請(qǐng)?jiān)趫D2中畫(huà)出當(dāng)?shù)妊苯?/span>的頂點(diǎn)P在第四象限時(shí)的圖形,并求證:.

(深入探究)

3)當(dāng)點(diǎn)Cx軸上移動(dòng)時(shí),點(diǎn)P也隨之運(yùn)動(dòng).探究點(diǎn)P在怎樣的圖形上運(yùn)動(dòng),請(qǐng)直接寫(xiě)出結(jié)論,并求出這個(gè)圖形所對(duì)應(yīng)的函數(shù)表達(dá)式;

4)直接寫(xiě)出的最小值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠AOB60°,點(diǎn)P在邊OA上,點(diǎn)M、N在邊OB上.

1)若∠PNO60°,證明△PON是等邊三角形;

2)若PMPN,OP12MN2,求OM的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)

圖像交于點(diǎn)A

(1)求點(diǎn)A的坐標(biāo);

(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);

(3)如圖,設(shè)x軸上一點(diǎn)Pa0),過(guò)點(diǎn)Px軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);

(4)在(3)的條件下,設(shè)直線x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長(zhǎng)最小,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案