【題目】如圖,已知正方形ABCD的邊長(zhǎng)為10cm,點(diǎn)E在邊AB上,且AE=4cm,
(1)如果點(diǎn)P在線段BC上以2cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請(qǐng)說明理由.
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為________cm/s時(shí),在某一時(shí)刻也能夠使△BPE與△CQP全等.
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD的四條邊運(yùn)動(dòng).求經(jīng)過多少秒后,點(diǎn)P與點(diǎn)Q第一次相遇,并寫出第一次相遇點(diǎn)在何處?
【答案】(1)是,4.8;(2)經(jīng)過秒點(diǎn)P與點(diǎn)Q第一次在A點(diǎn)相遇.
【解析】
試題正方形的四邊相等,四個(gè)角都是直角.(1)①速度相等,運(yùn)動(dòng)的時(shí)間相等,所以距離相等,根據(jù)全等三角形的判定定理可證明.②因?yàn)檫\(yùn)動(dòng)時(shí)間一樣,運(yùn)動(dòng)速度不相等,所以BP≠CQ,只有BP=CP時(shí)才相等,根據(jù)此可求解.
(2)知道速度,知道距離,這實(shí)際上是個(gè)追及問題,可根據(jù)追及問題的等量關(guān)系求解.
試題解析:(1)①∵t=1秒,
∴BP=CQ=4×1=4厘米,
∵正方形ABCD中,邊長(zhǎng)為10厘米
∴PC=BE=6厘米,
又∵正方形ABCD,
∴∠B=∠C,
∴△BPE≌△CQP
②∵VP≠VQ,∴BP≠CQ,
又∵△BPE≌△CQP,∠B=∠C,則BP=PC,
而BP=4t,CP=10-4t,
∴4t=10-4t
∴點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t=秒,
∴vq=6÷=4.8厘米/秒.
(2)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,
由題意,得4.8x-4x=30,
解得x=秒.
∴點(diǎn)P共運(yùn)動(dòng)了×4=150厘米
∴點(diǎn)P、點(diǎn)Q在A點(diǎn)相遇,
∴經(jīng)過秒點(diǎn)P與點(diǎn)Q第一次在A點(diǎn)相遇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項(xiàng)公益知識(shí)競(jìng)賽,比賽規(guī)定:每個(gè)班級(jí)由2名男生、2名女生及1名班主任老師組成代表隊(duì).但參賽時(shí),每班只能有3名隊(duì)員上場(chǎng)參賽,班主任老師必須參加,另外2名隊(duì)員分別在2名男生和2名女生中各隨機(jī)抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊(duì),求恰好抽到由男生甲、女生丙和這位班主任一起上場(chǎng)參賽的概率.(請(qǐng)用“畫樹狀圖”或“列表”或“列舉”等方法給出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn)
小明在學(xué)習(xí)魯教版八年級(jí)上冊(cè)97頁例4時(shí),受到啟發(fā)進(jìn)行如下數(shù)學(xué)實(shí)驗(yàn)操作:
如圖1,取一個(gè)銳角為45°的三角尺,把銳角頂點(diǎn)放在正方形ABCD的頂點(diǎn)D處,將三角尺繞點(diǎn)D旋轉(zhuǎn)一個(gè)角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點(diǎn)E和點(diǎn)F,連接FE,在繞點(diǎn)D旋轉(zhuǎn)過程中,發(fā)現(xiàn)線段AE,EF,CF滿足EF=AE+CF的數(shù)量關(guān)系,但是不會(huì)進(jìn)行證明,數(shù)學(xué)張老師給他如下的提示:把△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至△DCE’的位置,小明畫旋轉(zhuǎn)后的圖形,利用全等的知識(shí)證明了出來.你根據(jù)上面的提示畫出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進(jìn)行證明.
問題探究
小明的探究引發(fā)了老師的興趣,老師將三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長(zhǎng)線于點(diǎn)E和點(diǎn)F,老師問題小明此時(shí)AE,EF,CF滿足什么數(shù)量關(guān)系,小明思考后說出了正確的結(jié)論.請(qǐng)同學(xué)們直接寫出正確結(jié)論(不用寫出證明過程).
拓展延伸
張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗(yàn),解答下面的問題:
如圖3已知正方形ABCD,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,且∠EDF=45°,若CD=6,AE=2,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)G是BC邊上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE且交AG于點(diǎn)F.
(1)如圖1,求證:AE=BF;
(2)連接DF,若tan∠BAG=,AB=2,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點(diǎn)都在格點(diǎn)上,每個(gè)格子都是邊長(zhǎng)為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.
(1)畫出四邊形 ABCD 關(guān)于 y 軸對(duì)稱和四邊形 A′B′C′D′(點(diǎn) A、B、C、D的對(duì)稱點(diǎn)分別是點(diǎn) A′B′C′D′.
(2)求 A、B′、B、C 四點(diǎn)組成和四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店老板去圖書批發(fā)市場(chǎng)購買某種圖書.第一次用元購書若干本,并按該書定價(jià)元出售,很快售完.由于該書暢銷,第二次購書時(shí),每本書的批發(fā)價(jià)已比第一次提高了,他用元所購該書數(shù)量比第一次多本.
(1)求兩次購書的價(jià)格分別是多少?
(2)若第二次購書按定價(jià)售出本時(shí),出現(xiàn)滯銷,于是決定打折出售剩下這批書,那么該商家最低打幾折才能保證剩下書的利潤(rùn)率不低于?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知雙曲線y=(x<0)和y=(x>0),直線OA與雙曲線y=交于點(diǎn)A,將直線OA向下平移與雙曲線y=交于點(diǎn)B,與y軸交于點(diǎn)P,與雙曲線y=交于點(diǎn)C,S△ABC=6,=,則k=( )
A. ﹣6 B. ﹣4 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC和△DEF(頂點(diǎn)為網(wǎng)格線的交點(diǎn)),以及過格點(diǎn)的直線l.
(1)將△ABC向右平移兩個(gè)單位長(zhǎng)度,再向下平移兩個(gè)單位長(zhǎng)度,畫出平移后的三角形.
(2)畫出△DEF關(guān)于直線l對(duì)稱的三角形.
(3)填空:∠C+∠E= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點(diǎn),E為CD中點(diǎn),AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長(zhǎng)為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com