【題目】如圖,在矩形ABCD中,AB=8,BC=6,點(diǎn)P、點(diǎn)E分別是邊AB、BC上的動(dòng)點(diǎn),連結(jié)DP、PE.將△ADP與△BPE分別沿DP與PE折疊,點(diǎn)A與點(diǎn)B分別落在點(diǎn)A′,B′處.
(1) 當(dāng)點(diǎn)P運(yùn)動(dòng)到邊AB的中點(diǎn)處時(shí),點(diǎn)A′與點(diǎn)B′重合于點(diǎn)F處,過(guò)點(diǎn)C作CK⊥EF于K,求CK的長(zhǎng);
(2) 當(dāng)點(diǎn)P運(yùn)動(dòng)到某一時(shí)刻,若P,A',B'三點(diǎn)恰好在同一直線上,且A'B'=4 ,試求此時(shí)AP的長(zhǎng).
【答案】(1);(2),PA的長(zhǎng)為2或6.
【解析】
(1)由折疊的性質(zhì)可得E ,F,D三點(diǎn)在同一直線上,在Rt△DEC中,根據(jù)勾股定理可求出BE,CE,DE的長(zhǎng),再根據(jù)面積法即可求出CK的值;
(2)分兩種情況進(jìn)行討論:根據(jù)A′B′=4列出方程求解即可.
⑴如圖,
∵四邊形ABCD為矩形,將△ADP與△BPE分別沿DP與PE折疊,
∴∠PFD=∠PFE=90°,
∴∠PFD+∠PFE=180°,即:E ,F,D三點(diǎn)在同一直線上.
設(shè)BE=EF=x,則EC=6-x,
∵DC=AB=8, DF=AD=6,
在Rt△DEC中,∵DE=DF+FE=6+x, EC=6-x, DC=8,
∴(6+x)2=(6-x)2+82,
計(jì)算得出x=,即BE=EF=,
∴DE=, EC=,
∵S△DCE=DCCE=DECK,
∴CK=;
⑵①如圖2中,設(shè)AP=x,則PB=8-x,
由折疊可知:PA′=PA=x , PB′=PB=8-x,
∵A′B′=4,
∴8-x-x=4,
∴x=2, 即AP=2.
②如圖3中,
∵A′B′=4,
∴x-(8-x)=4, ∴x=6, 即AP=6.
綜上所述,PA的長(zhǎng)為2或6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AT是經(jīng)過(guò)點(diǎn)A的切線,弦CD垂直AB于P點(diǎn),Q為線段CP的中點(diǎn),連接BQ并延長(zhǎng)交切線AT于T點(diǎn),連接OT.
(1)求證:BC∥OT;
(2)若⊙O直徑為10,CD=8,求AT的長(zhǎng);
(3)延長(zhǎng)TO交直線CD于R,若⊙O直徑為10,CD=8,求TR的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用火柴棒按如圖所示的方式擺圖形,按照這樣的規(guī)律繼續(xù)擺下去,則第100個(gè)圖形需要火柴棒________根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是CD邊上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA,若AD=5,AP=8,則△APB的周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)A、B、O在數(shù)軸上對(duì)應(yīng)的數(shù)為a、b、0,且滿足|a+8|+(b﹣12)2=0,點(diǎn)M、N分別從O、B出發(fā),同時(shí)向左勻速運(yùn)動(dòng),M的速度為1個(gè)單位長(zhǎng)度每秒,N的速度為3個(gè)單位長(zhǎng)度每秒,A、B之間的距離定義為:AB=|a﹣b|.
(1)直接寫出OA= .OB= ;
(2)設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),恰好有AN=2AM;
(3)若點(diǎn)P為線段AM的中點(diǎn),Q為線段BN的中點(diǎn),M、N在運(yùn)動(dòng)的過(guò)程中,PQ+MN的長(zhǎng)度是否發(fā)生變化?若不變,請(qǐng)說(shuō)明理由,若變化,當(dāng)t為何值時(shí),PQ+MN有最小值?最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分別把帶有指針的圓形轉(zhuǎn)盤A、B分成4等份、3等份的扇形區(qū)域,并在每一個(gè)小區(qū)域內(nèi)標(biāo)上數(shù)字(如圖所示).歡歡、樂(lè)樂(lè)兩個(gè)人玩轉(zhuǎn)盤游戲,游戲規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),若指針?biāo)竷蓞^(qū)域的數(shù)字之積為奇數(shù),則歡歡勝;若指針?biāo)竷蓞^(qū)域的數(shù)字之積為偶數(shù),則樂(lè)樂(lè)勝;若有指針落在分割線上,則無(wú)效,需重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤.
(1)試用列表或畫樹狀圖的方法,求歡歡獲勝的概率;
(2)請(qǐng)問(wèn)這個(gè)游戲規(guī)則對(duì)歡歡、樂(lè)樂(lè)雙方公平嗎?試說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com