【題目】如果關(guān)于x的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,那么稱(chēng)這樣的方程為“倍根方程”.例如,一元二次方程的兩個(gè)根是2和4,則方程就是“倍根方程”.
(1)若一元二次方程是“倍根方程”,則c ;
(2)若是“倍根方程”,求代數(shù)式的值;
(3)若方程是倍根方程,且不同的兩點(diǎn)M(k+1,5),N(3-k,5)都在拋物線上,求一元二次方程的根.
【答案】(1)2;(2)1或;(3),.
【解析】
(1)由一元二次方程x2-3x+c=0是“倍根方程”,得到x1+2x1=3,2x12=c,即可得到結(jié)論;
(2)解方程(x-2)(mx+n)=0(m≠0)得x1=2,x2=,由方程兩根是2倍關(guān)系,得到x2=1或43,代入解方程即可得到結(jié)論;
(3)由方程ax2+bx+c=0(a≠0)是倍根方程,得到x1=2x2,由已知條件得到得到拋物線的對(duì)稱(chēng)軸x=,可得一元二次方程ax2+bx+c=0(a≠0)的根.
解:(1)若一元二次方程x2-3x+c=0是“倍根方程”,則c=2.
故答案為:2;
(2)∵是倍根方程,
則,
∴,
∴
①當(dāng)時(shí),原式=
②當(dāng)時(shí),原式=
(3)∵方程是倍根方程,設(shè)
∵,都在拋物線上,
,∴由拋物線的對(duì)稱(chēng)軸 可知:
又∵∴,即,
∴,
即的兩根分別為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的角平分線,,分別是和的高,連接交于.下列結(jié)論:①垂直平分;②垂直平分;③平分;④當(dāng)為時(shí),,其中不正確的結(jié)論的個(gè)數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、b、c是Rt△ABC和Rt△BED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱(chēng)為“勾系一元二次方程”.
請(qǐng)解決下列問(wèn)題:
寫(xiě)出一個(gè)“勾系一元二次方程”;
求證:關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;
若x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根,且四邊形ACDE的周長(zhǎng)是,求△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、3、﹣4,這些卡片除數(shù)字外都相同.王興從口袋中隨機(jī)抽取一張卡片,鐘華從剩余的三張卡片中隨機(jī)抽取一張,求兩張卡片上數(shù)字之積.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,列出兩人抽到的數(shù)字之積所有可能的結(jié)果.
(2)求兩人抽到的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)B(0,3),點(diǎn)C(4,0)
(1)求線段BC的長(zhǎng).
(2)如圖1,點(diǎn)A(﹣1,0),D是線段BC上的一點(diǎn),若△BAD∽△BCA時(shí),求點(diǎn)D的坐標(biāo).
(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)的圖象與和分別交于點(diǎn)和點(diǎn),與正比例函數(shù)圖象交于點(diǎn).
(1)求和的值
(2)求的面積
(3)在直線上是否存在異與點(diǎn)的另一點(diǎn),使得與的面積相等?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com