【題目】如圖,在x軸的正半軸上依次間隔相等的距離取點(diǎn)A1,A2,A3,A4,…,An,分別過這些點(diǎn)做x軸的垂線與反比例函數(shù)y=的圖象相交于點(diǎn)P1,P2,P3,P4,…Pn,再分別過P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分別為B1,B2,B3,B4,…,Bn﹣1,連接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一組Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,則Rt△Pn﹣1Bn﹣1Pn的面積為_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解下列方程,其中應(yīng)在方程左右兩邊同時(shí)加上4的是( )
A. x2﹣2x=5 B. x2+4x=5 C. 2x2﹣4x=5 D. 4x2+4x=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是Rt△ABC的外接圓,∠BAC=90°,AD平分∠BAC,且交⊙O于點(diǎn)D,過點(diǎn)D作DE∥BC,交AB的延長(zhǎng)線于點(diǎn)E,連接BD、CD.
(1)求證:DE是⊙O的切線;
(2)若AB=8,AC=6,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程
當(dāng)m取何值時(shí),這個(gè)方程有兩個(gè)不相等的實(shí)根?
若方程的兩根都是正數(shù),求m的取值范圍;
設(shè),是這個(gè)方程的兩個(gè)實(shí)數(shù)根,且,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】制作一種產(chǎn)品,需先將材料加熱達(dá)到60℃后,再進(jìn)行操作,設(shè)該材料溫度為y(℃)從加熱開始計(jì)算的時(shí)間為x(min).據(jù)了解,當(dāng)該材料加熱時(shí),溫度y與時(shí)間x成一次函數(shù)關(guān)系:停止加熱進(jìn)行操作時(shí),溫度y與時(shí)間x成反比例關(guān)系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達(dá)到60℃.
(1)分別求出將材料加熱和停止加熱進(jìn)行操作時(shí),y與x的函數(shù)關(guān)系式;
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時(shí),須停止操作,那么從開始加熱到停止操作,共經(jīng)歷了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(﹣4,),B(﹣1,n)是一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0,m<0)圖象的兩個(gè)交點(diǎn),AC⊥x軸于C,BD⊥y軸于D.
(1)求一次函數(shù)解析式及m的值;
(2)根據(jù)圖象直接寫出在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)小于于反比例函數(shù)的值?
(3)P是線段AB上的一點(diǎn),連接PC,PD,若△PCA和△PDB面積相等,求點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)梯子AB斜靠在一豎直的墻AO上,測(cè)得AO=2 m.若梯子的頂端沿墻下滑0.5米,這時(shí)梯子的底端也恰好外移0.5米,則梯子的長(zhǎng)度AB為( )
A. 2.5 m B. 3 m C. 1.5 m D. 3.5 m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月國(guó)際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場(chǎng)調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷售量為180個(gè),若售價(jià)每提高1元,銷售量就會(huì)減少10個(gè),請(qǐng)回答以下問題:
(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤(rùn),售價(jià)應(yīng)定為多少?
(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤(rùn)W最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com