【題目】如圖,在平行四邊形ABCD中,E是BC的中點,且∠AEC=∠DCE,則下列結(jié)論不正確的是( )
A. BF=DFB. S△AFD=2S△EFBC. 四邊形AECD是等腰梯形D. ∠AEB=∠ADC
【答案】B
【解析】
根據(jù)已知條件即可推出△BEF∽△DAF,推出A項為正確,已知條件可以推出四邊形AECD為等腰梯形,推出C項正確,結(jié)合平行四邊形的性質(zhì),可以推出D項正確,所以B項是錯誤的.
解:∵平行四邊形ABCD中,
∴△BEF∽△DAF,
∵E是BC的中點,
∴BF:FD=BE:AD,
∴BF=DF,
故A項正確;
∵∠AEC=∠DCE,
∴四邊形AECD為等腰梯形,
故C項正確;
∵△BEF∽△DAF,BF=DF,
∴S△AFD=4S△EFB,
故B項不正確;
∵∠AEB+∠AEC=180°
∠ADC+∠C=180°
∠AEC=∠C
∴∠AEB=∠ADC
因此D項正確.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長600km的普通公路,另一條是全長480km的高速公路,某客車在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時間是由普通公路從甲地到乙地所需時間的一半,求該客車由高速公路從甲地到乙地所需的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛玩“石頭、剪刀、布”的游戲,每一局游戲雙方各自隨機(jī)做出“石頭”、“剪刀”、“布”三種手勢的一種,規(guī)定“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,相同的手勢是和局.
(1)用樹形圖或列表法計算在一局游戲中兩人獲勝的概率各是多少?
(2)如果兩人約定:只要誰率先勝兩局,就成了游戲的贏家.用樹形圖或列表法求只進(jìn)行兩局游戲便能確定贏家的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鈍角△ABC中,AB=AC,BC=2,O是邊AB上一點,以O為圓心,OB為半徑作⊙O,交邊AB于點D,交邊BC于點E,過E作⊙O的切線交邊AC于點F.
(1)求證:EF⊥AC.
(2)連結(jié)DF,若∠ABC=30°,且DF∥BC,求⊙O的半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=13,AC=5,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥將隨機(jī)落在這塊綠化帶上,則小鳥落在花圃上的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點,⊙O的直徑BE=2,∠BCD=120°,A為的中點,延長BA到點P,使BA=AP,連接PE.
(1)求線段BD的長;
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣2mx+3m與x軸交于A、B兩點,與y軸交于點C(0,﹣3)
(1)求該拋物線的解析式;
(2)點D為該拋物線上的一點、且在第二象限內(nèi),連接AC,若∠DAB=∠ACO,求點D的坐標(biāo);
(3)若點E為線段OC上一動點,試求2AE+EC的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com