【題目】二次函數(shù)

(1)寫出函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸.

(2)判斷點(diǎn)是否在該函數(shù)圖象上,并說明理由.

(3)求出以該拋物線與兩坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的三角形的面積.

【答案】(1)開口向下,對(duì)稱軸為直線,頂點(diǎn)為;(2)不在函數(shù)圖象上,理由詳見解析;(3) 12.

【解析】

1)先把拋物線解析式配成頂點(diǎn)式得到,然后根據(jù)二次函數(shù)的性質(zhì)寫出開口方向,對(duì)稱軸方程,頂點(diǎn)坐標(biāo);

2)將代入函數(shù)解析式求出對(duì)應(yīng)的y即可判斷;

3)確定拋物線與軸的交點(diǎn)坐標(biāo)為,然后根據(jù)三角形面積公式求解.

解:(1)解:(1

,

拋物線開口向下;

,

拋物線對(duì)稱軸方程為,頂點(diǎn)坐標(biāo);

開口向下,對(duì)稱軸為直線,頂點(diǎn)為

2)不在函數(shù)圖象上.

理由:當(dāng)時(shí),

所以點(diǎn)不在函數(shù)圖象上.

3)令,得,解得,

所以拋物線與軸的交點(diǎn)坐標(biāo)為,

當(dāng)x=0時(shí),y=6.

拋物線與軸交于點(diǎn),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貨車銷售公司,分別試銷售兩種型號(hào)貨車各一個(gè)月,并從中選擇一種長期銷售,設(shè)每月銷售量為x輛若銷售甲型貨車,每月銷售的利潤為y1(萬元),已知每輛甲型貨車的利潤為(m+6)萬元,(m是常數(shù),9m11),每月還需支出其他費(fèi)用8萬元,受條件限制每月最多能銷售甲型貨車25輛;若銷售乙型貨車,每月的利潤y2(萬元)x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x10時(shí),y220,當(dāng)x20時(shí),y255,受條件限制每月最多能銷售乙型貨車40輛.

(1)分別求出y1y2x的函數(shù)關(guān)系式,并確定x的取值范范圍;

(2)分別求出銷售這兩種貨車的最大月利潤;(最大利潤能求值的求值,不能求值的用式子表示)

(3)為獲得最大月利潤,該公司應(yīng)該選擇銷售哪種貨車?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax23ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)c直線y=﹣x+4經(jīng)過點(diǎn)B、C

1)求拋物線的表達(dá)式;

2)過點(diǎn)A的直線ykx+k交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,連接AC,當(dāng)直線ykx+k平分ABC的面積,求點(diǎn)M的坐標(biāo);

3)如圖2,把拋物線位于x軸上方的圖象沿x軸翻折,當(dāng)直線ykx+k與翻折后的整個(gè)圖象只有三個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線yx2+bx+cx軸交于A(﹣1,0),B2,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求該拋物線的解析式及點(diǎn)C的坐標(biāo);

(2)直線y=﹣x2與該拋物線在第四象限內(nèi)交于點(diǎn)D,與x軸交于點(diǎn)F,連接ACCD,線段AC與線段DF交于點(diǎn)G,求證:AGF≌△CGD

(3)直線ymm0)與該拋物線的交點(diǎn)為M,N(點(diǎn)M在點(diǎn)N的左側(cè)),點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為點(diǎn)M,點(diǎn)H的坐標(biāo)為(10),若四邊形NHOM的面積為,求點(diǎn)HOM的距離d

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+4ax+4a+3a≠0).

1)求二次函數(shù)圖象的頂點(diǎn)坐標(biāo);

2)若a=﹣,求二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,BAD=60°,AB為直徑的⊙O分別交邊AD和對(duì)角線BD于點(diǎn)E、F,連接EF并延長交邊BC于點(diǎn)G,連接BE。

(1)求證:AE=DE;

(2)若⊙O的半徑為2,EG的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DE分別是AB、AC的中點(diǎn),若ABC的面積為SABC36cm2,則梯形EDBC的面積SEDBC為(  )

A.9B.18C.27D.30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,ABAC,∠BAC90°,D、E分別是AB、AC邊的中點(diǎn).將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)a角(a180°),得到AB′C′(如圖2),連接DB',EC'

1)探究DB'EC'的數(shù)量關(guān)系,并結(jié)合圖2給予證明;

2)填空:

①當(dāng)旋轉(zhuǎn)角α的度數(shù)為_____時(shí),則DB'AE;

②在旋轉(zhuǎn)過程中,當(dāng)點(diǎn)B',DE在一條直線上,且AD時(shí),此時(shí)EC′的長為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案