【題目】如圖,都為等腰直角三角形,三點在同一直線上,連接.
(1)若,求的周長;
(2)如圖,點為的中點,連接并延長至,使得,連接.
①求證:;
②探索與的位置關系,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】某文具店銷售A、B兩種文具,其中A文具的定價為20元/件,B產品的定價10元/件.
(1)若該文具按定價售出A、B兩種文具共400件,若銷售總額不低于5000元,則至少銷售A產品多少件?
(2)該文具店2018年2月按定價銷售A文具280件,B文具120件,2018年3月,市場情況發(fā)生變化,A文具銷售價與上個月持平,但這個月的銷售量比上個月減少了m%;B文具的銷售價比上個月減少了m%,但銷售量增加了m%;3月份的銷售總金額與2月份保持不變.求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC= °,∠DEC= °;點D從B向C運動時,∠BDA逐漸變 (填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點,AB=,AD=2,BC=3,下列結論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y1=2x﹣2的圖象與y軸交于點A,一次函數(shù)y2的圖象與y軸交于點B(0,6),點C為兩函數(shù)圖象交點,且點C的橫坐標為2.
(1)求一次函數(shù)y2的函數(shù)解析式;
(2)求△ABC的面積;
(3)問:在坐標軸上,是否存在一點P,使得S△ACP=2S△ABC,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,若點從點出發(fā),以每秒的速度沿折線運動,設運動時間為秒().
(1)用尺規(guī)作線段的垂直平分線(不寫作法,保留作圖痕跡);
(2)若點恰好運動到的垂直平分線上時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖A村和B村在一條大河CD的同側,它們到河岸的距離AC、BD分別為1千米和4千米,又知道CD的長為4千米.
(1)現(xiàn)要在河岸CD上建一水廠向兩村輸送自來水.有兩種方案備選.
方案1:水廠建在C點,修自來水管道到A村,再到B 村(即AC+AB).(如圖)
方案2:作A點關于直線CD的對稱點,連接交CD 于M點,水廠建在M點處,分別向兩村修管道AM和BM. (即AM+BM) (如圖)
從節(jié)約建設資金方面考慮,將選擇管道總長度較短的方案進行施工.請利用已有條件分別進行計算,判斷哪種方案更合適.
(2)有一艘快艇Q從這條河中駛過,當快艇Q與CD中點G相距多遠時,△ABQ為等腰三角形?直接寫出答案,不要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=CB,AC=10,S△ABC=60,E為AB上一動點,連結CE,過A作AF⊥CE于F,連結BF,則BF的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為線段上一動點(不與點,重合),在同側分別作等邊和等邊,與交于點,與交于點,與交于點,連接.下列五個結論:①;②;③;④DE=DP;⑤.其中正確結論的個數(shù)是( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com