【題目】整體思想就是通過研究問題的整體形式從面對問題進行整體處理的解題方法.如,此題設“”,得方程,解得,.利用整體思想解決問題:采采家準備裝修-廚房,若甲,乙兩個裝修公司,合做需周完成,甲公司單獨做4周后,剩下的由乙公司來做,還需周才能完成,設甲公司單獨完成需周,乙公司單獨完成需周,則得到方程_______.利用整體思想 ,解得__________

【答案】

【解析】

設甲公司單獨完成需x周,乙公司單獨完成需y周,依題意得分式方程組,換元后得關于ab的二元一次方程組,解得ab,再根據(jù)倒數(shù)關系可得xy的值,從而問題得解.

設甲公司單獨完成需x周,乙公司單獨完成需y周,

依題意得:,

原方程化為:,

解得:

,

故答案為:;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,請分別根據(jù)已知條件進行推理,得出結論,并在括號內注明理由.

①∵ ∠B=∠3(已知),∴____________.(______,______)

②∵∠1=∠D (已知),∴____________.(______,______)

③∵∠2=∠A (已知),∴____________.(______,______)

④∵∠B+∠BCE=180° (已知),∴____________.(______,______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),中,,,,的平分線,過點作與垂直的直線.動點從點出發(fā)沿折線以每秒1個單位長度的速度向終點運動,運動時間為秒,同時動點從點出發(fā)沿折線以相同的速度運動,當點到達點、同時停止運動.

1)請寫出的長為_______,的長為_______;

2)當上運動時,如圖(2),設交于點,當為何值時,為等腰三角形?求出所有滿足條件的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經過點(﹣1,2),點A是該圖象第一象限分支上的動點,連結AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,ACx軸交于點D,當時,則點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩種型號臺燈,若購買2A型臺燈和6B型臺燈共需610元.若購買6A型臺燈和2B型臺燈共需470元.

1)求A、B兩種型號臺燈每臺分別多少元?

2)采購員小紅想采購AB兩種型號臺燈共30臺,且總費用不超過2200元,則最多能采購B型臺燈多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)y2=的圖象分別交于C、D兩點,點D2,3),點B是線段AD的中點.

1)求一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的解析式;

2)求COD的面積;

3)直接寫出時自變量x的取值范圍.

4)動點P0,m)在y軸上運動,當的值最大時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領下不用涉水過河就測得河的寬度,他們是這樣做的:

在河流的一條岸邊B點,選對岸正對的一棵樹A;

沿河岸直走20m有一樹C,繼續(xù)前行20m到達D處;

D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;

測得DE的長為5米.

求:(1)河的寬度是多少米?

2)請你證明他們做法的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖.過點A1(1,0)作x軸的垂線,交直線y=2x于點B1;點A2與點O關于直線A1B1對稱,過點A2作x軸的垂線,交直線y=2x于點B2;點A3與點O關于直線A2B2對稱.過點A3作x軸的垂線,交直線y=2x于點B3;…按此規(guī)律作下去.則點A3的坐標為 ,點Bn的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直角三角形ABC中,∠C=90°,將△ABC繞點A逆時針旋轉至△AED,使點C的對應點D恰好落在邊AB上,E為點B的對應點.設∠BACα,則∠BED______.(用含α的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案