【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形,連接AC交EF于點(diǎn)G,下列結(jié)論:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF=2S△ABE , 其中結(jié)論正確的個(gè)數(shù)為( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
【答案】B
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.
∵△AEF等邊三角形,
∴AE=EF=AF,∠EAF=60°.
∴∠BAE+∠DAF=30°.
在Rt△ABE和Rt△ADF中,
,
Rt△ABE≌Rt△ADF(HL),
∴BE=DF,
∴CE=CF,故①正確;
∵∠BAE=∠DAF,
∴∠DAF+∠DAF=30°,
即∠DAF=15°,
∴∠AEB=75°,故②正確;
設(shè)EC=x,由勾股定理,得
EF= x,CG= x,
AG=AEsin60°=EFsin60°=2×CGsin60°= x,
∴AG≠2GC,③錯(cuò)誤;
∵CG= x,AG= x,
∴AC= x
∴AB=AC = x,
∴BE= x﹣x= x,
∴BE+DF=( ﹣1)x,
∴BE+DF≠EF,故④錯(cuò)誤;
∵S△CEF= x2 ,
S△ABE= ×BE×AB= × x× x= x2 ,
∴2S△ABE═S△CEF , 故⑤正確.
綜上所述,正確的有3個(gè),
故選:B.
通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性質(zhì)就可以得出∠AEB=75°;設(shè)EC=x,由勾股定理得到EF,表示出BE,利用三角形的面積公式分別表示出S△CEF和2S△ABE , 再通過比較大小就可以得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個(gè)送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測(cè)得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長(zhǎng)時(shí)間后這個(gè)人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是一幅“蘋果排列圖”,第一行有1個(gè)蘋果,第二行有2個(gè),第三行有4個(gè),第四行有8個(gè),….你是否發(fā)現(xiàn)蘋果的排列規(guī)律?猜猜看,第十行有_____個(gè)蘋果;第n行有_____ 個(gè)蘋果.(可用乘方形式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△OCD的一邊OC在x軸上,∠C=90°,點(diǎn)D在第一象限,OC=3,DC=4,反比例函數(shù)的圖象經(jīng)過OD的中點(diǎn)A.
(1)求該反比例函數(shù)的表達(dá)式;
(2)若該反比例函數(shù)的圖象與Rt△OCD的另一邊DC交于點(diǎn)B,求過A、B兩點(diǎn)的直線的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D在反比例函數(shù)y= 的圖象上,過點(diǎn)D作x軸的平行線交y軸于點(diǎn)B(0,3).過點(diǎn)A(5,0)的直線y=kx+b與y軸于點(diǎn)C,且BD=OC,tan∠OAC= .
(1)求反比例函數(shù)y= 和直線y=kx+b的解析式;
(2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說明理由;
(3)點(diǎn)E為x軸上點(diǎn)A右側(cè)的一點(diǎn),且AE=OC,連接BE交直線CA與點(diǎn)M,求∠BMC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)如圖1,在平行四邊形ABCD中,已知點(diǎn)E在AB上,點(diǎn)F在CD上,且AE=CF.求證:DE=BF;
(2)如圖2,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,若∠C=20°,求∠CDA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)-1,2,-3,4,-5,6,…如圖排序,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢?/span>(C的位置)是有理數(shù)4,那么“峰4”中C的位置是有理數(shù)________,有理數(shù)“2018”應(yīng)排在A,B,C,D,E中的________位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是生活中常見的月歷表,你對(duì)它了解嗎?
(1)如果下表是另一個(gè)月的月歷表,a表示該月中某一天,b,c,d是該月中其他3天,那么b,c,d與a有什么關(guān)系?b=________;c=________;d=________(用含a的式子填空).
(2)用一個(gè)長(zhǎng)方形框圈出月歷表中的三個(gè)數(shù)(如上表中的陰影),若這三個(gè)數(shù)之和等于51,則這三個(gè)數(shù)各是多少?
(3)這樣圈出的三個(gè)數(shù)之和可能是64嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2017年起,昆明將迎來“高鐵時(shí)代”,這就意味著今后昆明的市民外出旅行的路程與時(shí)間將大大縮短,但也有不少游客根據(jù)自己的喜好依然選擇乘坐普通列車;已知從昆明到某市的高鐵行駛路程是400千米,普通列車的行駛路程是高鐵行駛路程的1.3倍,請(qǐng)完成以下問題:(1)普通列車的行駛路程為________千米;(2)若高鐵的平均速度(千米/時(shí))是普通列車平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求普通列車和高鐵的平均速度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com