【題目】本題滿分10分)如圖,在△ABC中,∠B=45°,∠ACB=60°,AB=,點(diǎn)D為BA延長(zhǎng)線上的一點(diǎn),且∠D=∠ACB,⊙O為△ABC的外接圓.
(1)求BC的長(zhǎng);
(2)求⊙O的半徑.
【答案】(1)3+;(2)2.
【解析】
試題分析:(1)過(guò)點(diǎn)A作AE⊥BC,垂足為E,在Rt△ABE和在Rt△ACE中,利用特殊角的三角函數(shù)值可分別求出BE=AE=3,EC=,可得BC=BE+EC=3+;(2)連接AO并延長(zhǎng)到⊙O上一點(diǎn)M,連接CM,在Rt△ACE中,利用∠M=60°,AC=2,可求AM=4,從而得半徑是2.
試題解析:解:(1)過(guò)點(diǎn)A作AE⊥BC,垂足為E,
∴∠AEB=∠AEC=90°,在Rt△ABE中,∵sinB=,
∴AE=ABsinB=3sin45°=3×=3,
∵∠B=45°,∴∠BAE=45°,∴BE=AE=3,
在Rt△ACE中,
∵tan∠ACB=,
∴EC=,
∴BC=BE+EC=3+;
(2)連接AO并延長(zhǎng)到⊙O上一點(diǎn)M,連接CM,
由(1)得,在Rt△ACE中,∵∠EAC=30°,EC=,
∴AC=2,
∵∠D=∠M=60°,
∴sin60°=,
解得:AM=4,
∴⊙O的半徑為2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)E(﹣4,2),F(xiàn)(﹣2,﹣2),以原點(diǎn)O為位似中心,位似比為2:1將△EFO縮小,則點(diǎn)E的對(duì)應(yīng)點(diǎn)E′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)該函數(shù)與x軸的交點(diǎn)坐標(biāo) ;
(2)在平面直角坐標(biāo)系中,用描點(diǎn)法畫(huà)出該二次函數(shù)的圖象;
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 3 | 0 | -1 | 0 | 3 | … |
(3)根據(jù)圖象回答:
①當(dāng)自變量x的取值范圍滿足什么條件時(shí),y<0?
②當(dāng)0≤x<3時(shí),y的取值范圍是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC 中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ繞點(diǎn)P旋轉(zhuǎn),得到△PDE,點(diǎn)D落在線段PQ上.
(1)求證:PQ∥AB;
(2)若點(diǎn)D在BAC的平分線上,求CP的長(zhǎng);
(3)若△PDE與△ABC重疊部分圖形的周長(zhǎng)為T,且12≤T≤16,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某地區(qū)45000名九年級(jí)學(xué)生的睡眠情況,運(yùn)用所學(xué)統(tǒng)計(jì)知識(shí)解決上述問(wèn)題所要經(jīng)歷的幾個(gè)主要步驟:①抽樣調(diào)查;②設(shè)計(jì)調(diào)查問(wèn)卷;③用樣本估計(jì)總體;④整理數(shù)據(jù);⑤分析數(shù)據(jù),按操作的先后進(jìn)行排序?yàn)?/span> . (只寫(xiě)序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,E,F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com