【題目】如圖,中,點(diǎn)與點(diǎn)在的同側(cè),且.
(1)如圖1,點(diǎn)不與點(diǎn)重合,連結(jié)交于點(diǎn).設(shè)求關(guān)于的函數(shù)解析式,寫出自變量的取值范圍;
(2)是否存在點(diǎn),使與相似,若存在,求的長;若不存在,請說明理由;
(3)如圖2,過點(diǎn)作垂足為.將以點(diǎn)為圓心,為半徑的圓記為.若點(diǎn)到上點(diǎn)的距離的最小值為,求的半徑.
【答案】(1);(2)存在,;(3)或
【解析】
(1)由AE⊥AC,∠ACB=90°,可得AE∥BC,然后由平行線分線段成比例定理,求得y關(guān)于x的函數(shù)解析式;
(2)由題意易得要使△PAE與△ABC相似,只有∠EPA=90°,即CE⊥AB,然后由△ABC∽△EAC,求得答案;
(3)易得點(diǎn)C必在⊙E外部,此時(shí)點(diǎn)C到⊙E上點(diǎn)的距離的最小值為CE-DE.然后分別從當(dāng)點(diǎn)E在線段AD上時(shí)與當(dāng)點(diǎn)E在線段AD延長線上時(shí),去分析求解即可求得答案.
解:
,而與都是銳角,
要使與相似,只有,
即
此時(shí),則,
故存在點(diǎn),使,
此時(shí)
點(diǎn)必在外部,
此時(shí)點(diǎn)到上點(diǎn)的距離的最小值為
設(shè)
①當(dāng)點(diǎn)在線段 上時(shí),
解得:
即的半徑為
②當(dāng)點(diǎn)在線段延長線上時(shí),
解得:
即的半徑為
的半徑為或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)y=ax2+bx﹣3過A(1,0)、B(3,0)、C三點(diǎn).
(1)求拋物線解析式;
(2)如圖1,點(diǎn)P是BC上方拋物線上一點(diǎn),作PQ∥y軸交BC于Q點(diǎn).請問是否存在點(diǎn)P使得△BPQ為等腰三角形?若存在,請直接寫出P點(diǎn)坐標(biāo);若不存在,請說明理由;
(3)如圖2,連接AC,點(diǎn)D是線段AB上一點(diǎn),作DE∥BC交AC于E點(diǎn),連接BE.若△BDE∽△CEB,求D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點(diǎn),點(diǎn)在第四象限,∥ 軸,.
(1)求的值及點(diǎn)的坐標(biāo);
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=8,BC=12,點(diǎn)E是邊BC上一點(diǎn),BE=5,點(diǎn)F是射線BA上一動(dòng)點(diǎn),連接EF,將△BEF沿著EF折疊,使B點(diǎn)的對應(yīng)點(diǎn)P落在長方形一邊的垂直平分線上,連接BP,則BP的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P為直線BD上方拋物線上一點(diǎn),若,請求出點(diǎn)P的坐標(biāo).
(3)如圖3,M為線段AB上的一點(diǎn),過點(diǎn)M作MN∥BD,交線段AD于點(diǎn)N,連接MD,若△DNM∽△BMD,請求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=|x2﹣2x﹣3|的大致圖象如圖所示,如果方程|x2﹣2x﹣3|=m(m為實(shí)數(shù))有2個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)I是Rt△ABC的內(nèi)心,∠C=90°,AC=3,BC=4,將∠ACB平移使其頂點(diǎn)C與I重合,兩邊分別交AB于D、E,則△IDE的周長為( 。
A.3B.4C.5D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)O為圓心,OE為半徑作優(yōu)弧EF,連接OE,OF,且OE=3,∠EOF=120°,在弧EF上任意取點(diǎn)A,B(點(diǎn)B在點(diǎn)A的順時(shí)針方向)且使AB=2,以AB為邊向弧內(nèi)作正三角形ABC.
(1)發(fā)現(xiàn):不論點(diǎn)A在弧上什么位置,點(diǎn)C與點(diǎn)O的距離不變,點(diǎn)C與點(diǎn)O的距離是 ;點(diǎn)C到直線EF的最大距離是 .
(2)思考:當(dāng)點(diǎn)B在直線OE上時(shí),求點(diǎn)C到OE的距離,在備用圖1中畫出示意圖,并寫出計(jì)算過程.
(3)探究:當(dāng)BC與OE垂直或平行時(shí),直接寫出點(diǎn)C到OE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 4 B. 6 C. 3 D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com