精英家教網 > 初中數學 > 題目詳情
(2008•常德)解不等式組
【答案】分析:解先求出各不等式的解集,再求其公共解集即可.
解答:解:解不等式①,得x≤3.(2分)
解不等式②,得4x+4>x-2,即x>-2.(4分)
∴原不等式組的解集為-2<x≤3.(6分)
點評:解不等式組應遵循的原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.
練習冊系列答案
相關習題

科目:初中數學 來源:2008年全國中考數學試題匯編《一元一次方程》(01)(解析版) 題型:解答題

(2008•常德)閱讀理解:
若p、q、m為整數,且三次方程x3+px2+qx+m=0有整數解c,則將c代入方程得:c3+pc2+qc+m=0,移項得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q與c及m都是整數,所以c是m的因數.上述過程說明:整數系數方程x3+px2+qx+m=0的整數解只可能是m的因數.例如:方程x3+4x2+3x-2=0中-2的因數為±1和±2,將它們分別代入方程x3+4x2+3x-2=0進行驗證得:x=-2是該方程的整數解,-1,1,2不是方程的整數解.
解決問題:
(1)根據上面的學習,請你確定方程x3+x2+5x+7=0的整數解只可能是哪幾個整數?
(2)方程x3-2x2-4x+3=0是否有整數解?若有,請求出其整數解;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年湖南省常德市中考數學試卷(解析版) 題型:解答題

(2008•常德)閱讀理解:
若p、q、m為整數,且三次方程x3+px2+qx+m=0有整數解c,則將c代入方程得:c3+pc2+qc+m=0,移項得:m=-c3-pc2-qc,即有:m=c×(-c2-pc-q),由于-c2-pc-q與c及m都是整數,所以c是m的因數.上述過程說明:整數系數方程x3+px2+qx+m=0的整數解只可能是m的因數.例如:方程x3+4x2+3x-2=0中-2的因數為±1和±2,將它們分別代入方程x3+4x2+3x-2=0進行驗證得:x=-2是該方程的整數解,-1,1,2不是方程的整數解.
解決問題:
(1)根據上面的學習,請你確定方程x3+x2+5x+7=0的整數解只可能是哪幾個整數?
(2)方程x3-2x2-4x+3=0是否有整數解?若有,請求出其整數解;若沒有,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年湖南省常德市中考數學試卷(解析版) 題型:解答題

(2008•常德)解不等式組

查看答案和解析>>

同步練習冊答案