【題目】如圖,在ABCD中,BE平分∠ABC,CE平分∠BCD,BC=3,EF∥BC,EF的長(zhǎng)為________.
【答案】1.5
【解析】
過(guò)點(diǎn)E作EG∥AB,交BC與點(diǎn)G,易得四邊形EFBG為平行四邊形,則EF=BG,根據(jù)平行線的性質(zhì)和角平分線的定義等量代換可得EG=BG=CG=BC,,進(jìn)而求得EF的長(zhǎng).
解:過(guò)點(diǎn)E作EG∥AB,交BC與點(diǎn)G,
∵EG∥AB,
∴∠BEG=∠EBF,
∵BE平分∠ABC,
∴∠EBF=∠EBG,
∴∠BEG=∠EBG,
∴BG=EG.
∵AB∥CD,EG∥AB,
∴EG∥CD,
同理可得CG=EG,
∴BG=BC=×3=1.5.
∵EF∥BG,EG∥BF,
∴四邊形EFBG是平行四邊形,
∴EF=BG=1.5.
故答案為:1.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊AB,AC,AD的中點(diǎn),連接CE、CF、OE、OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么條件時(shí),四邊形AEOF正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△A2B2C2;
(3)P為x軸上一動(dòng)點(diǎn),當(dāng)AP+CP有最小值時(shí),求這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,O是等邊△ABC內(nèi)一點(diǎn),連接OA、OB、OC,且OA=3,OB=4,OC=5,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.求:
①旋轉(zhuǎn)角的度數(shù);
②線段OD的長(zhǎng);
③∠BDC的度數(shù).
(2)如圖2所示,O是等腰直角△ABC(∠ABC=90°)內(nèi)一點(diǎn),連接OA、OB、OC,將△BAO繞點(diǎn)B順時(shí)針旋轉(zhuǎn)后得到△BCD,連接OD.當(dāng)OA、OB、OC滿足什么條件時(shí),∠ODC=90°?請(qǐng)給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段,為的中點(diǎn), 為上一點(diǎn),連接交于點(diǎn).
(1)如圖,當(dāng)OA=OB且為中點(diǎn)時(shí),求的值;
(2)如圖,當(dāng)OA=OB,=時(shí),求tan∠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點(diǎn) E、F,AE、BF 相交于點(diǎn) M.
(1)求證:AE⊥BF;
(2)判斷線段 DF 與 CE 的大小關(guān)系,并予以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角三角形的判定
(1)有一個(gè)角是________________的三角形是直角三角形.
(2)有兩個(gè)角________________的三角形是直角三角形.
(3)勾股定理的逆定理:如果三角形兩邊的平方和等于________________,那么這個(gè)三角形是直角三角形.
(4)如果三角形一邊上的________________等于這邊的一半,那么這個(gè)三角形是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)直角三角形紙片放置在平面直角坐標(biāo)系中,點(diǎn).
(1)點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對(duì)應(yīng)點(diǎn),邊與軸交于點(diǎn).
①如圖1,當(dāng)點(diǎn)剛好落在軸上時(shí),求點(diǎn)的坐標(biāo)
②如圖2,當(dāng)時(shí),若線段在軸上移動(dòng)得到線段(線段平移時(shí)不動(dòng)),當(dāng)△A′O′Q′周長(zhǎng)最小時(shí),求OO′的長(zhǎng)度.
(2)如圖3,若點(diǎn)為邊上一點(diǎn)(點(diǎn)不與重合),沿將紙片折疊得的對(duì)應(yīng)點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC延長(zhǎng)線上一點(diǎn),DE⊥AB于點(diǎn)E,EF⊥BC于點(diǎn)F.若CD=3AE,CF=6,則AC的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com