精英家教網 > 初中數學 > 題目詳情

【題目】解不等式組 把解集表示在數軸上,并求出不等式組的整數解.

【答案】解:

由①得

由②得x<3

∴原不等式組的解集為 ≤x<3

數軸表示:

不等式組的整數解是﹣1,0,1,2


【解析】解不等式組的基本步驟去分母、移項、合并同類項化為最簡形式,套用口訣:小大大小,求出解集,端點有等實心無等空心.
【考點精析】解答此題的關鍵在于理解不等式的解集在數軸上的表示的相關知識,掌握不等式的解集可以在數軸上表示,分三步進行:①畫數軸②定界點③定方向.規(guī)律:用數軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈,以及對一元一次不等式組的解法的理解,了解解法:①分別求出這個不等式組中各個不等式的解集;②利用數軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,直線EF分別交平行四邊形ABCDAB、CD于直EF,將圖形沿直線EF對折,點A、D分別落在點A、D處.若∠A=60°AD=4,AB=8,當點A落在BC邊上任意點時,設點P為直線EF上的動點,請直接寫出PC+PA的最小值(

A.4+B.8C.6+D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD,延長AD到E,使DE=AD,連接BE與DC交于O點.

(1)求證:△BOC≌△EOD;
(2)當△ABE滿足什么條件時,四邊形BCED是菱形?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若兩個二次函數圖象的頂點、開口方向都相同,則稱這兩個二次函數為“同簇二次函數”

1)請直接寫出兩個為“同簇二次函數”的函數:①______,②_________;

2)已知關于的二次函數,若為“同簇二次函數”,求函數的表達式,并求出當時,的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分線,若在邊AB上截取BE=BC,連接DE,則圖中共有個等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經過A(﹣4,0),B(0,﹣4),C(2,0)三點.

(1)求拋物線的解析式;
(2)若點M為第三象限內拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.
求S關于m的函數關系式,并求出S的最大值.
(3)若點P是拋物線上的動點,點Q是直線y=﹣x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在圖中利用網格點和三角板畫圖或計算:

1)在給定方格紙中畫出平移后的(的對應點是點);

2)畫出邊上的中線

3)畫出邊上的高線;

4)記網格的邊長為1,則在平移的過程中線段掃過區(qū)域的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線交于點O,且AB≠AD,過O作OE⊥BD交BD于點E.若△CDE的周長為10,則平行四邊形ABCD的周長為( )

A.10
B.16
C.18
D.20

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:用3A型車和2B型車載滿貨物一次可運貨17噸;用2A型車和3B型車載滿貨物一次可運貨l8噸,某物流公刊現有35噸貨物,計劃同時租用A型車a輛,B型車b輛,一次運完,且恰好每輛車都載滿貨物.

根據以上信息,解答下列問題:

(1)lA型車和lB型車都載滿貨物一次可分別運貨多少噸?

(2)請你幫該物流公司設計租車方案;

查看答案和解析>>

同步練習冊答案