如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求⊙O的半徑.

【答案】分析:(1)連接OE,證明△ACO≌△AEO,推出∠AEO=∠ACO=90°,根據(jù)切線的判定推出即可;
(2)求出AB、BC,證△BEO∽△BCA,得出比例式,代入求出即可.
解答:(1)證明:連接OE,
∵OD=OE,
∴∠ODE=∠OED,
∵DE∥AO,
∴∠COA=∠ODE,∠AOE=∠OED,
∴∠COA=∠AOE,
∵在△ACO和△AEO中

∴△ACO≌△AEO(SAS),
∴∠AEO=∠ACO,
∵AC⊥CD,
∴∠ACO=90°,
∴∠AEO=90°,
∵OE為半徑,
∴直線AB是⊙O的切線.

(2)解:設(shè)⊙O的半徑是R,
∵△ACO≌△AEO,
∴AC=AE=1,
∴AB=1+2=3,
在Rt△ACB中,由勾股定理得:BC==2,
∵∠BEO=90°=∠ACO,∠B=∠B,
∴△BEO∽△BCA,
=,
=,
R=
即⊙O的半徑是
點評:本題考查了切線判定,全等三角形的性質(zhì)和判定,相似三角形的性質(zhì)和判定,等腰三角形的性質(zhì),平行線性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運用性質(zhì)進(jìn)行推理和計算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知CD是⊙O的直徑,過點D的弦DE平行于半徑OA,若∠D的度數(shù)是50°,則∠C的度數(shù)是( 。
A、25°B、30°C、40°D、50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O交CA于點E,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)若AC⊥BC,且AC=8,BC=6,求切線GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知CD是⊙O的直徑,弦DE∥半徑OA,∠D=50°,∠C=( 。
A、50°B、40°C、25°D、20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知CD是Rt△ABC的斜邊上的高,其中AD=9cm,BD=4cm,那么CD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蒼梧縣二模)如圖,已知CD是⊙O的直徑,AC⊥CD,垂足為C,弦DE∥OA,直線AE,CD相交于點B.
(1)求證:直線AB是⊙O的切線;
(2)如果AC=1,BE=2,求
OCAC
的值.

查看答案和解析>>

同步練習(xí)冊答案