【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:

(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;

拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關(guān)系.

【答案】(1)是,理由見解析;(2)作圖見解析;(3.

【解析】試題分析:(1)要證明點E是四邊形ABCDAB邊上的相似點,只要證明有一組三角形相似就行,很容易證明△ADE∽△BEC,所以問題得解.

2)根據(jù)兩個直角三角形相似得到強相似點的兩種情況即可.

3)因為點E是梯形ABCDAB邊上的一個強相似點,所以就有相似三角形出現(xiàn),根據(jù)相似三角形的對應線段成比例,可以判斷出AEBE的數(shù)量關(guān)系,從而可求出解.

解:(1)點E是四邊形ABCD的邊AB上的相似點.

理由:∵∠A=55°,

∴∠ADE+∠DEA=125°

∵∠DEC=55°

∴∠BEC+∠DEA=125°

∴∠ADE=∠BEC.(2分)

∵∠A=∠B,

∴△ADE∽△BEC

E是四邊形ABCDAB邊上的相似點.

2)作圖如下:

3E是四邊形ABCM的邊AB上的一個強相似點,

∴△AEM∽△BCE∽△ECM,

∴∠BCE=∠ECM=∠AEM

由折疊可知:△ECM≌△DCM,

∴∠ECM=∠DCM,CE=CD,

∴∠BCE=∠BCD=30°,

∴BE=CE=AB

Rt△BCE中,tan∠BCE==tan30°,

,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若任意一個三位數(shù)t的百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,那么可將這個三位數(shù)表示為ta0),且滿足t100a+10b+c,我們把三位數(shù)各位上的數(shù)字的乘積叫做原數(shù)的積數(shù),記為Pt).重新排列一個三位數(shù)各位上的數(shù)字,必可以得到一個最大的三位數(shù)和一個最小的三位數(shù),此最大三位數(shù)與最小三位數(shù)之差叫做原數(shù)的差數(shù),記為Ft),例如:264的積數(shù)P264)=48,差數(shù)F264)=642246396

1)根據(jù)以上材料:F258)=   ;

2)若一個三位數(shù)t,且Pt)=0,Ft)=135,求這個三位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx2x軸交于A、B兩點,與y軸交于C點,且A1,0).

1)求拋物線的解析式及頂點D的坐標;

2)判斷△ABC的形狀,證明你的結(jié)論;

3)點M是拋物線對稱軸上的一個動點,當△ACM的周長最小時,求點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次數(shù)學單元測試,七年級第一小組共10名同學,小組長把超過班級平均分的部分記為,不足的部分記為,記錄如表:

與平均分的差值(分)

15

9

0

3

12

17

人數(shù)

1

2

1

2

3

1

根據(jù)表格數(shù)據(jù)解答下列問題:

1)第一小組同學的平均分比班級平均分高還是低?高或低多少分?

2)若該班這次測試的平均分為80分,求第一小組10名同學的總分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設施. 如圖所示,京張高鐵起自北京北站,途經(jīng)清河、沙河、呂平等站,終點站為張家口南站,全長174千米.

1)根據(jù)資料顯示,京張高鐵的客運價格擬定為0. 4元(人·千米),可估計京張高鐵單程票價約為_________元(結(jié)果精確到個位);

2)京張高鐵建成后,將是世界上第一條設計時速為350千米/時的高速鐵路. 乘高鐵從北京到張家口的時間將縮短至1小時,如果按此設計時速運行,那么每站(不計起始站和終點站)?康钠骄鶗r間是多少分鐘?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°ABBC,點D是線段AB上的一點,連接CD,過點BBGCD,分別交CDCA于點E,F,與過點A且垂直于AB的直線相交于點G,連接DF.給出以下四個結(jié)論:①②若點DAB的中點,則AF=AB;③當BC,F,D四點在同一個圓上時,DFDB;④若,,其中正確的結(jié)論序號是( )

A. ①② B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ABCD交于點O,將一個三角板的直角頂點放置于O處,使其兩條直角邊分別位于OC的兩側(cè),若OC剛好平分∠BOF,∠BOE=2COE,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MNAB于點D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線相交于的平分線,.

1)圖中除直角外,還有相等的角嗎?請寫出兩對.

____________

2)如果

①那么根據(jù)______可得______

②因為的平分線,所以______=______

③求的度數(shù).

查看答案和解析>>

同步練習冊答案