如圖(14),已知 ,,現(xiàn)以A點(diǎn)為位似中心,相似比為9:4,將OB向右側(cè)放大,B點(diǎn)的對(duì)應(yīng)點(diǎn)為C.
1.求C點(diǎn)坐標(biāo)及直線BC的解析式;
2.一拋物線經(jīng)過B、C兩點(diǎn),且頂點(diǎn)落在x軸正半軸上,求該拋物線的解析式并畫出函數(shù)圖象;
3.現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交于另一點(diǎn)P,請找出拋物線上所有滿足到直線AB距離為的點(diǎn)P.
1.過C點(diǎn)向x軸作垂線,垂足為D,由位似圖形性質(zhì)可知:
△ABO∽△ACD, ∴.
由已知,可知: .
∴.∴C點(diǎn)坐標(biāo)為.………………2分
直線BC的解析是為:
化簡得: ……………………………… 3分
2.設(shè)拋物線解析式為,由題意得: ,解得: ,
∴解得拋物線解析式為或.
又∵的頂點(diǎn)在x軸負(fù)半軸上,不合題意,故舍去.
∴滿足條件的拋物線解析式為·················· 5分
(畫出函數(shù)圖象) 7分
3.將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交與另一點(diǎn)P,設(shè)P到 直線AB的距離為h,
故P點(diǎn)應(yīng)在與直線AB平行,且相距的上下兩條平行直線和上.······ 8分
由平行線的性質(zhì)可得:兩條平行直線與y軸的交點(diǎn)到直線BC的距離也為.
如圖,設(shè)與y軸交于E點(diǎn),過E作EF⊥BC于F點(diǎn),
在Rt△BEF中,,
∴.∴可以求得直線與y軸交點(diǎn)坐標(biāo)為············· 10分
同理可求得直線與y軸交點(diǎn)坐標(biāo)為·················· 11分
∴兩直線解析式;.
根據(jù)題意列出方程組: ⑴;⑵
∴解得:;;;
∴滿足條件的點(diǎn)P有四個(gè),它們分別是,,,·· 13分
【解析】(1)利用相似及相似比,可得到C的坐標(biāo).把A,B代入一次函數(shù)解析式即可求得解析式的坐標(biāo).
(2)頂點(diǎn)落在x軸正半軸上說明此函數(shù)解析式與x軸有一個(gè)交點(diǎn),那么△=0,再把B,C兩點(diǎn)即可.
(3)到直線AB的距離為3 的直線有兩條,可求出這兩條直線解析式,和二次函數(shù)解析式組成方程組,求得點(diǎn)P坐標(biāo)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(14),已知 ,,現(xiàn)以A點(diǎn)為位似中心,相似比為9:4,將OB向右側(cè)放大,B點(diǎn)的對(duì)應(yīng)點(diǎn)為C.
1.求C點(diǎn)坐標(biāo)及直線BC的解析式;
2.一拋物線經(jīng)過B、C兩點(diǎn),且頂點(diǎn)落在x軸正半軸上,求該拋物線的解析式并畫出函數(shù)圖象;
3.現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交于另一點(diǎn)P,請找出拋物線上所有滿足到直線AB距離為的點(diǎn)P.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆四川省樂山市五通橋區(qū)初三模擬考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖(14),已知 ,,現(xiàn)以A點(diǎn)為位似中心,相似比為9:4,將OB向右側(cè)放大,B點(diǎn)的對(duì)應(yīng)點(diǎn)為C.
【小題1】求C點(diǎn)坐標(biāo)及直線BC的解析式;
【小題2】一拋物線經(jīng)過B、C兩點(diǎn),且頂點(diǎn)落在x軸正半軸上,求該拋物線的解析式并畫出函數(shù)圖象;
【小題3】現(xiàn)將直線BC繞B點(diǎn)旋轉(zhuǎn)與拋物線相交于另一點(diǎn)P,請找出拋物線上所有滿足到直線AB距離為的點(diǎn)P.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com