【題目】已知二次函數(shù)的解析式是y=﹣x2+2x+3

1)用配方法將該二次函數(shù)化成yaxh2+k的形式,并寫出頂點坐標;

2)在圖中畫出該二次函數(shù)的圖象(不需要列表),并寫出該圖象與x軸的交點;

3)當0x3時,直接寫出y的取值范圍.

【答案】1y=﹣(x12+4,頂點坐標為(1,4);(2)圖詳見解析,(﹣10),(3,0);(30y4

【解析】

1)利用配方法得到y=﹣(x12+4,則根據(jù)二次函數(shù)的性質得到拋物線的頂點坐標;

2)解方程﹣x2+2x+30得拋物線與x軸的交點坐標,然后描點畫出二次函數(shù)的圖象;

3)結合函數(shù)圖象和二次函數(shù)的性質寫出y的取值范圍.

解:(1y=﹣x2+2x+3=﹣(x12+4,

所以拋物線的頂點坐標為(1,4);

2)當y0時,﹣x2+2x+30,解得x1=﹣1,x23,拋物線與x軸的交點坐標為(﹣10),(3,0),

如圖,

3)當0≤x3時,y的取值范圍為0y≤4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2-2x-3x軸交于A,B兩點,與y軸交于點C,其對稱軸與拋物線相交于點M,與x軸相交于點N,點P是線段MN上的一個動點,連接CP,過點PPECPx軸于點E

1)求拋物線的頂點M的坐標;

2)當點E與原點O的重合時,求點P的坐標;

3)求動點E到拋物線對稱軸的最大距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黔東南州某校吳老師組織九(1)班同學開展數(shù)學活動,帶領同學們測量學校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測得電線桿頂端A的仰角為30°,在C處測得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請你根據(jù)這些數(shù)據(jù)求電線桿的高AB.

(結果精確到1m,參考數(shù)據(jù):1.4,1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,則下列結論中:①;②;③;④;⑤;其中正確的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)yx2+3x+2的圖象如圖1所示,根據(jù)圖象回答問題:

1)當x滿足   時,x2+3x+20

2)在解決上述問題的基礎上,探究解決新問題:

函數(shù)y的自變量x的取值范圍是   ;

下表是函數(shù)y的幾組yx的對應值.

x

7

6

4

3

2

1

0

1

3

4

y

5.477

4.472

2.449

1.414

0

0

1.414

2.449

4.472

5.477

如圖2,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點的大概位置,請你根據(jù)描出的點,畫出該函數(shù)的圖象:

③利用圖象,直接寫出關于x的方程x4=x2+3x+2的所有近似實數(shù)解 (結果精確到0.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+c的圖象如圖所示,對稱軸是直線x=﹣1,有以下結論:①abc0;②2ab0;③4acb28a;④3a+c0;⑤abmam+b),其中正確的結論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l1:y=﹣x與反比例函數(shù)y=的圖象交于A,B兩點(點A在點B左側),已知A點的縱坐標是2:

(1)求反比例函數(shù)的表達式;

(2)將直線l1:y=﹣x向上平移后的直線l2與反比例函數(shù)y=在第二象限內交于點C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對角線OB2為一邊作正方形OB2B3C2,……,依次下去.則

B6的坐標____________

查看答案和解析>>

同步練習冊答案