【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1)(x3224

2x2+12x+270

3x2+6x4

42x323x3

【答案】(1)x13+2,x232 (2)x1=﹣3x2=﹣9 3x1=﹣3+,x2=﹣3 (4)x13x24.5

【解析】

1)利用平方根的定義開方轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
2)利用十字相乘法將方程左邊的多項(xiàng)式分解因式,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
3)方程左右兩邊都加上9,左邊化為完全平方式,右邊合并為一個(gè)非負(fù)常數(shù),開方轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;
4)將方程右邊的式子整體移項(xiàng)到左邊,提取公因式化為積的形式,利用兩數(shù)相乘積為0,兩因式中至少有一個(gè)為0轉(zhuǎn)化為兩個(gè)一元一次方程,求出一次方程的解即可得到原方程的解;

解:(1)開方得:x3±2 ,

解得:x13+2,x232;

2)分解因式得:(x+3)(x+9)=0,

解得:x1=﹣3x2=﹣9;

3)配方得:x2+6x+913,即(x+3213,

開方得:x+3±

解得:x1=﹣3+,x2=﹣3

4)方程整理得:2x323x3)=0,

分解因式得:(x3[2x3)﹣3]0

解得:x13x24.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過點(diǎn)E、F分別作BC、AC的垂線相交于點(diǎn)M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),MH=;③AF+BE=EF;④MGMH=,其中正確結(jié)論為( )

A. ①②③ B. ①③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是邊長(zhǎng)為6的等邊△ABC三邊中垂線的交點(diǎn),將△ABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)180°,得到△A1B1C1,則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC∠A=36°,BD為角平分線,DE⊥AB,垂足為E

1)寫出圖中一對(duì)全等三角形和一對(duì)相似比不為1的相似三角形;

2)選擇(1)中一對(duì)加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩張長(zhǎng)為9,寬為3的矩形紙條交叉放置,其中重疊部分是一個(gè)菱形,則重疊部分菱形周長(zhǎng)最小值是__________,周長(zhǎng)最大值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知l1l2l3 , AB=3,BC=2,CD=1,那么下列式子中不成立的是( 。

A.ECCG=51;B.EFFG=11

C.EFFC=32;D.EFEG=35

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E是菱形外一點(diǎn),DEACCEBD

1)求證:四邊形DECO是矩形;

2)連接AEBD于點(diǎn)F,當(dāng)∠ADB30°,DE3時(shí),求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰RtABC,ACB=90°,CA=CB,以BC為邊向外作等邊CBA,連接AD,過點(diǎn)C作∠ACB的角平分線與AD交于點(diǎn)E,連接BE

1)若AE=2,求CE的長(zhǎng)度;

2)以AB為邊向下作AFBAFB=60°,連接FE,求證:FA+FB= FE

查看答案和解析>>

同步練習(xí)冊(cè)答案