【題目】如圖1,點(diǎn)A、D在y軸正半軸上,點(diǎn)B、C分別在x軸上,CD平分∠ACB,與y軸交于D點(diǎn),∠CAO=90°-∠BDO.
(1)求證:AC=BC:
(2)如圖2,點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)E為AC上一點(diǎn),且∠DEA=∠DBO,求BC+EC的長(zhǎng);
(3)如圖3,過(guò)D作DF⊥AC于F點(diǎn),點(diǎn)H為FC上一動(dòng)點(diǎn),點(diǎn)G為OC上一動(dòng)點(diǎn),當(dāng)H在FC上移動(dòng)、點(diǎn)G在OC上移動(dòng)時(shí),始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫(xiě)出你的結(jié)論并加以證明.
(圖3)
【答案】(1)證明見(jiàn)解析;(2)8;(3)GH=FH+OG,證明見(jiàn)解析.
【解析】試題分析: (1)由題意∠CAO=90°-∠BDO,可知∠CAO=∠CBD,CD平分∠ACB與y軸交于D點(diǎn),所以可由AAS定理證明△ACD≌△BCD,由全等三角形的性質(zhì)可得AC=BC;
(2)過(guò)D作DN⊥AC于N點(diǎn),可證明Rt△BDO≌Rt△EDN、△DOC≌△DNC,因此,BO=EN、OC=NC,所以,BC+EC=BO+OC+NC-NE=2OC,即可得BC+EC的長(zhǎng);
(3)在x軸的負(fù)半軸上取OM=FH,可證明△DFH≌△DOM、△HDG≌△MDG,因此,MG=GH,所以,GH=OM+OG=FH+OG,即可證明所得結(jié)論.
試題解析:
(1)證明:∵∠CAO=90°-∠BDO,
∴∠CAO=∠CBD.
又∵∠ACD=∠BCD,CD=CD,
∴△ACD≌△BCD(AAS).
∴AC=BC.
(2)解:過(guò)D作DN⊥AC于N點(diǎn),如圖所示:
∵∠ACD=∠BCD,∠DOC=∠DNC=90°,
CD=CD
∴△DOC≌△DNC(AAS),
∴DO=DN,OC=NC.
又∵∠DEA=∠DBO,∠DOB=∠DNC=90°
∴△BDO≌△EDN(AAS),
∴BO=EN.
∴BC+EC=BO+OC+NC-NE=2OC=8.
(3)GH=FH+OG.
證明:由(1)知:DF=DO,
在x軸的負(fù)半軸上取OM=FH,連接DM,
如圖所示:
在△DFH和△DOM中
∴△DFH≌△DOM(SAS).
∴DH=DM,∠l=∠ODM.
∴∠GDH=∠1+∠2=∠ODM+∠2=∠GDM.
在△HDG和△MDG中
∴△HDG≌△MDG(SAS).
∴MG=GH,
∴GH=OM+OG=FH+OG.
點(diǎn)睛: 本題主要考查了全等三角形的判定及其性質(zhì),做題時(shí)添加了輔助線,正確作出輔助線是解決問(wèn)題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,它表示甲乙兩人從同一個(gè)地點(diǎn)出發(fā)后的情況.到十點(diǎn)時(shí),甲大約走了13千米.根據(jù)圖象回答:
(1)甲是幾點(diǎn)鐘出發(fā)?
(2)乙是幾點(diǎn)鐘出發(fā),到十點(diǎn)時(shí),他大約走了多少千米?
(3)到十點(diǎn)為止,哪個(gè)人的速度快?
(4)兩人最終在幾點(diǎn)鐘相遇?
(5)你能將圖象中得到信息,編個(gè)故事嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“數(shù)學(xué)奧林匹克”大賽預(yù)賽,各參賽選手的成績(jī)?nèi)缦拢?/span>
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過(guò)整理,得到數(shù)據(jù)分析表如下:
班級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
九(1)班 | 100 | 94 | b | 93 | 12 |
九(2)班 | 99 | a | 95.5 | 93 | 8.4 |
(1)直接寫(xiě)出表中a、b的值:a= , b=;
(2)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額在四個(gè)“98分”的學(xué)生中任選二個(gè),求另外兩個(gè)決賽名額落在不同班級(jí)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AC為對(duì)角線,延長(zhǎng)CD至點(diǎn)E使CE=CA,連接AE。F為AB上一點(diǎn),且BF=DE,連接FC.
(1)若DE=1,CF=2,求CD的長(zhǎng)。
(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,,點(diǎn),分別在,上,射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針回轉(zhuǎn),射線繞點(diǎn)順時(shí)針旋轉(zhuǎn)至便立即逆時(shí)針回轉(zhuǎn).射線轉(zhuǎn)動(dòng)的速度是每秒度,射線轉(zhuǎn)動(dòng)的速度是每秒度.
(1)直接寫(xiě)出的大小為_______;
(2)射線、轉(zhuǎn)動(dòng)后對(duì)應(yīng)的射線分別為、,射線交直線于點(diǎn),若射線比射線先轉(zhuǎn)動(dòng)秒,設(shè)射線轉(zhuǎn)動(dòng)的時(shí)間為秒,求為多少時(shí),直線直線?
(3)如圖2,若射線、同時(shí)轉(zhuǎn)動(dòng)秒,轉(zhuǎn)動(dòng)的兩條射線交于點(diǎn),作,點(diǎn)在上,請(qǐng)?zhí)骄?/span>與的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請(qǐng)你類(lèi)比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
在學(xué)習(xí)“分式方程及其解法”過(guò)程中,老師提出一個(gè)問(wèn)題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?
經(jīng)過(guò)獨(dú)立思考與分析后,小明和小聰開(kāi)始交流解題思路如下:
小明說(shuō):解這個(gè)關(guān)于x的分式方程,得到方程的解為.由題意可得,所以,問(wèn)題解決.
小聰說(shuō):你考慮的不全面.還必須保證才行.
請(qǐng)回答:_______________的說(shuō)法是正確的,并說(shuō)明正確的理由是:__________________.
完成下列問(wèn)題:
(1)已知關(guān)于x的方程的解為非負(fù)數(shù),求m的取值范圍;
(2)若關(guān)于x的分式方程無(wú)解.直接寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一塊直角三角形的綠地,量得直角邊BC為6cm,AC為8cm,現(xiàn)在要將原綠地?cái)U(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)先化簡(jiǎn),再求值:( ﹣ ) ,其中x= ﹣2.
(2)計(jì)算:|﹣4|+( )﹣2﹣( ﹣1)0﹣ cos45°.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com