【題目】如圖,在平行四邊形中,,,分別是,的中點,.
(1)求證:四邊形是菱形;
(2)求的長.
【答案】(1)見解析;(2)
【解析】
(1)由平行四邊形的性質得出AD∥BC,AD=BC,證出DE∥CF,DE=CF,得出四邊形CDEF是平行四邊形,證出CD=CF,即可得出四邊形CDEF是菱形;
(2)連接DF,證明△CDF是等邊三角形,得出∠CDF=∠CFD=60°,求出∠BDF=30°,證出∠BDC=∠BDF+∠CDF=90°,由勾股定理即可得出答案.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵E,F分別是AD,BC的中點,
∴DE=AD,CF=BC,
∴DE∥CF,DE=CF,
∴四邊形CDEF是平行四邊形,
又∵BC=2CD,
∴CD=CF,
∴四邊形CDEF是菱形;
(2)如圖,連接,
,,
是等邊三角形,
,,.
是的中點,
,
.
,
.
,
.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,以AB為直徑的圓O交AC于點D,過點D作DE⊥BC,垂足為E,連接OE.
(1)求證:DE是⊙O的切線;
(2)若CD=,∠ACB=30°,求OE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是菱形ABCD邊上的動點,它從點A出發(fā)沿A→B→C→D路徑勻速運動到點D,設的面積為y,P點的運動時間為x,則y關于x的函數圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先完成下列填空,再在同一直角坐標系中畫出以下函數的圖象(不必再列表)
(1)正比例函數過( 0 , )和( 1 , );
(2)一次函數( 0 , )( , 0 ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數的圖象交軸、軸分別于兩點,交直線于。
(1)求點的坐標;
(2)若,求的值;
(3)在(2)的條件下,是線段上一點,軸于,交于,若,求點的坐標。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的點(不與點B、C重合),連結AD.
問題引入:
(1)如圖①,當點D是BC邊上的中點時,S△ABD:S△ABC= ;當點D是BC邊上任意一點時,S△ABD:S△ABC= (用圖中已有線段表示).
探索研究:
(2)如圖②,在△ABC中,O點是線段AD上一點(不與點A、D重合),連結BO、CO,試猜想S△BOC與S△ABC之比應該等于圖中哪兩條線段之比,并說明理由.
拓展應用:
(3)如圖③,O是線段AD上一點(不與點A、D重合),連結BO并延長交AC于點F,連結CO并延長交AB于點E,試猜想的值,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,A(10,0),C(0,4),點D是OA的中點,點P在邊BC上以每秒1個單位長的速度由點C向點B運動.
(1)當t為何值時,四邊形PODB是平行四邊形?
(2)在線段PB上是否存在一點Q,使得ODQP為菱形?若存在,求t的值;若不存在,請說明理由;
(3)△OPD為等腰三角形時,寫出點P的坐標(不必寫過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC延長線于M,連接CD,下列四個結論:①∠ADC=45°;②BD=AE;③AC+CE=AB;④AB-BC=2MC,其中正確的有( )個.
A. 1B. 2C. 3D. 4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com