8.9的算術(shù)平方根為(  )
A.9B.±9C.3D.±3

分析 根據(jù)算術(shù)平方根的含義和求法,求出9的算術(shù)平方根為多少即可.

解答 解:∵$\sqrt{9}$=3,
∴9的算術(shù)平方根為3.
故選:C.

點(diǎn)評(píng) 此題主要考查了算術(shù)平方根的性質(zhì)和應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:①被開(kāi)方數(shù)a是非負(fù)數(shù);②算術(shù)平方根a本身是非負(fù)數(shù).求一個(gè)非負(fù)數(shù)的算術(shù)平方根與求一個(gè)數(shù)的平方互為逆運(yùn)算,在求一個(gè)非負(fù)數(shù)的算術(shù)平方根時(shí),可以借助乘方運(yùn)算來(lái)尋找.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,若∠DAE=∠E,∠B=∠D,那么AB∥DC嗎?請(qǐng)?jiān)谙旅娴慕獯疬^(guò)程中填空或在括號(hào)內(nèi)填寫(xiě)理由.
解:理由如下:
∵∠DAE=∠E,(已知)
∴AD∥BE,(內(nèi)錯(cuò)角相等,兩直線平行)
∴∠D=∠DCE.(兩直線平行,內(nèi)錯(cuò)角相等)
又∵∠B=∠D,(已知)
∴∠B=∠DCE.( 等量代換)
∴AB∥DC,(同位角相等,兩直線平行)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知∠AOB=90°,∠COD=30°,OE平分∠AOC,OF平分∠BOD.
(1)如圖1,當(dāng)OB、OC重合時(shí),求∠EOF的度數(shù).
(2)當(dāng)∠COD從圖1所示位置繞點(diǎn)O順時(shí)針旋轉(zhuǎn)n°(0<<90)時(shí),如圖2,∠AOE-∠BOF的值是否為定值?若是定值,求出∠AOE-∠BOF的值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知在△ABC中,AB=AC=5,BC=6,則tanB的值為$\frac{4}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解方程:
(1)3(x-4)=3-2x
(2)$\frac{x+1}{2}$-$\frac{2-3x}{6}$=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將拋物線y=-x2+1向上平移2個(gè)單位,得到的拋物線表達(dá)式為(  )
A.y=-(x+2)2B.y=-(x-2)2C.y=-x2-1D.y=-x2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知:關(guān)于x的方程x2-(m+2)x+m+1=0.
(1)求證:該方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y=x2-(m+2)x+m+1(m>0)與x軸交點(diǎn)為A,B(點(diǎn)A在點(diǎn)B的左邊),且兩交點(diǎn)間的距離是2,求二次函數(shù)的表達(dá)式;
(3)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).
在(2)的條件下,垂直于y軸的直線y=n與拋物線交于點(diǎn)E,F(xiàn).若拋物線在點(diǎn)E,F(xiàn)之間的部分與線段EF所圍成的區(qū)域內(nèi)(包括邊界)恰有7個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,直接寫(xiě)出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若兩個(gè)相似六邊形的周長(zhǎng)的比是3﹕2,其中較大一個(gè)六邊形的面積為81,則較小一個(gè)六邊形的面積為36.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖所示,則∠A+∠B+∠C+∠D+∠E+∠F+∠G的度數(shù)為540°.

查看答案和解析>>

同步練習(xí)冊(cè)答案