【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+4x軸于點(diǎn)A(﹣2,0)和B(BA右側(cè)),交y軸于點(diǎn)C,直線y=經(jīng)過(guò)點(diǎn)B,交y軸于點(diǎn)D,且DOC中點(diǎn).

(1)求拋物線的解析式;

(2)若P是第一象限拋物線上的一點(diǎn),過(guò)P點(diǎn)作PHBDH,設(shè)P點(diǎn)的橫坐標(biāo)是t,線段PH的長(zhǎng)度是d,求dt的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)d=時(shí),將射線PH繞著點(diǎn)P順時(shí)針?lè)较蛐D(zhuǎn)45°交拋物線于點(diǎn)Q,求點(diǎn)Q的坐標(biāo).

【答案】(1)y=﹣x2+x+4;(2)P(,);(3)Q(0,4).

【解析】試題分析:(1)首先求出點(diǎn)B坐標(biāo),利用待定系數(shù)法即可解決問(wèn)題.

(2)設(shè)Pt,﹣t2+t+4),,cos∠HPM=cos∠DBO,可得,由此構(gòu)建二次函數(shù),利用二次函數(shù)的性質(zhì)解決問(wèn)題.

(3) 過(guò)點(diǎn)PPFx軸于點(diǎn)F,過(guò)點(diǎn)HHGPF于點(diǎn)GBDPQ交于點(diǎn)N,過(guò)NNEHGE.由全等三角形PHG≌△HNE,的性質(zhì),(2)中函數(shù)解析式求得點(diǎn)P、N的坐標(biāo),然后由直線與拋物線的解析式求得交點(diǎn)Q的坐標(biāo).

解:(1)y=2kx﹣12k 經(jīng)過(guò)B點(diǎn),

∴當(dāng)y=0,x=6,

B(6,0),又∵A(﹣2,0),

解得,

y=﹣x2+x+4.

(2)如圖,過(guò)點(diǎn)PPMy軸交BD于點(diǎn)M,設(shè)P(t,﹣t2+t+4),

CD=OD,

當(dāng)x=0時(shí)y=4,

C(0,4)

OD=2,

D(0,2),

BD=2

設(shè)直線BD解析式為y=mx+n,

6m+n=0,n=2,

yBD=﹣x+2,

M(t,﹣t+2),

PM=﹣t2+t+2,

∵∠HPM=DBO,

cosHPM=cosDBO,

=,

=

d=﹣t2+t+,

d=﹣(t﹣2+,

∴當(dāng)t=時(shí),PH值最大,

P(,).

(3)過(guò)點(diǎn)PPFx軸于點(diǎn)F,過(guò)點(diǎn)HHGPF于點(diǎn)G,BDPQ交于點(diǎn)N,過(guò)NNEHGE.

∵∠HPN=45°,PHBD,

PH=HN,

∴△PHG≌△HNE,

HG=NE,PG=EH,

∵由(2)知,d=﹣t2+t+,即:d=﹣(t﹣2+,

∴當(dāng)t=時(shí),PH=

P(,).

當(dāng)PH=時(shí),HG=PG=,

EH=,EN=,

N(﹣),P(,),

yPN=x+4,

解得,

Q(0,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) O 是等邊△ABC 內(nèi)一點(diǎn),∠AOB105°,∠BOC 等于α,將△BOC 繞點(diǎn) C 按 順時(shí)針?lè)较蛐D(zhuǎn) 60°得△ADC,連接 OD.

1)求證:△COD 是等邊三角形.

2)求∠OAD 的度數(shù).

3)探究:當(dāng)α為多少度時(shí),△AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)80°后得到△A′B′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′,連接BB′,若∠B′BC=20°,則∠BB′C′的大小是(  )

A. 82° B. 80° C. 78° D. 76°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,是中線,作關(guān)于的軸對(duì)稱圖形.

1)直接寫出的位置關(guān)系;

2)連接,寫出的數(shù)量關(guān)系,并說(shuō)明理由;

3)當(dāng),時(shí),在上找一點(diǎn),使得點(diǎn)到點(diǎn)與到點(diǎn)的距離之和最下小,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明同學(xué)在完成第10章的學(xué)習(xí)后,遇到了一些問(wèn)題,請(qǐng)你幫助他.

1)圖1中,當(dāng),試說(shuō)明

2)圖2中,若,則嗎?請(qǐng)說(shuō)明理由.

3)圖3中,,若,,,則______(直接寫出結(jié)果,用含x,y,z的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)ECD上一點(diǎn),將BCE沿BE翻折后點(diǎn)C恰好落在AD邊上的點(diǎn)F處,過(guò)FFHBCH,交BEG,連接CG

1)求證:四邊形CEFG是菱形;

2)若AB=8,BC=10,求四邊形CEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍;

(2)若=﹣1,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究規(guī)律:我們有可以直接應(yīng)用的結(jié)論:若兩條直線平行,那么在一條直線上任取一點(diǎn),無(wú)論這點(diǎn)在直線的什么位置,這點(diǎn)到另一條直線的距離均相等.例如:如圖1,兩直線,兩點(diǎn),上,,則.

如圖2,已知直線,為直線上的兩點(diǎn),.為直線上的兩點(diǎn).

(1)請(qǐng)寫出圖中面積相等的各對(duì)三角形: .

(2)如果,,為三個(gè)定點(diǎn),點(diǎn)上移動(dòng),那么無(wú)論點(diǎn)移動(dòng)到任何位置,總有: 的面積相等;理由是: .

解決問(wèn)題:

如圖3,五邊形是張大爺十年前承包的一塊土地的示意圖,經(jīng)過(guò)多年開墾荒地,現(xiàn)已變成如圖4所示的形狀,但承包土地與開墾荒地的分界小路(圖4中折線)還保留著,張大爺想過(guò)點(diǎn)修一條直路,直路修好后,要保持直路左邊的土地面積與承包時(shí)的一樣多.請(qǐng)你用以上的幾何知識(shí),按張大爺?shù)囊笤O(shè)計(jì)出修路方案.(不計(jì)分界小路與直路的占地面積)

(1)寫出設(shè)計(jì)方案,并在圖4中畫出相應(yīng)的圖形;

(2)說(shuō)明方案設(shè)計(jì)理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,△ABC,AB=AC,點(diǎn)E是邊AC上一點(diǎn),過(guò)點(diǎn)EEFBCAB于點(diǎn)F

(1)如圖①,求證AE=AF;

(2)如圖②,AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0°<α<144°)得到AEF.連接CEBF′.

BF′=6,CE的長(zhǎng);

EBC=∠BAC=36°,在圖的旋轉(zhuǎn)過(guò)程中當(dāng)CE′∥AB時(shí),直接寫出旋轉(zhuǎn)角α的大小

查看答案和解析>>

同步練習(xí)冊(cè)答案