【題目】如圖,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A﹣D﹣C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1、O2分別從點A、點B同時出發(fā),運動的時間為t.
(1)請求出⊙O2與腰CD相切時t的值;
(2)在0s<t≤3s范圍內,當t為何值時,⊙O1與⊙O2外切?
【答案】(1);(2)經過3秒,⊙O1與⊙O2外切
【解析】試題(1)先設⊙O2運動到E與CD相切,且切點是F;連接EF,并過E作EG∥BC,交CD于G,再過G作GH⊥BC于H,即可得到直角三角形EFG和矩形GEBH.由∠C=60°可得∠CGH=30°,即可得到∠FGE=60°.在Rt△EFG中,根據勾股定理可得EG的值,那么CH=BC-BH=BC-EG.在Rt△CGH中,利用60°的角的正切值可求出GH的值,即可求得結果;
(2)因為0s<t≤3s,所以O1一定在AD上,連接O1O2.利用勾股定理可得到關于t的一元二次方程,解出即可.
(1)如圖所示,設點O2運動到點E處時,⊙O2與腰CD相切.過點E作EF⊥DC,垂足為F,則EF=4cm.作EG∥BC,交DC于G,作GH⊥BC,垂足為H.
由直角三角形GEF中,∠EGF+∠GEF=90°,
又∠EGF+∠CGH=90°,
∴∠GEF=∠CGH=30°,
設FG=xcm,則EG=2xcm,又EF=4cm,
根據勾股定理得:,解得,
則,
又在直角三角形CHG中,∠C=60°,
∴
則EB=GH=CHtan60°=
∴秒;
(2)由于0s<t≤3s,所以,點O1在邊AD上.如圖連接O1O2,則O1O2=6cm.
由勾股定理得,
解得,(不合題意,舍去).
答:經過3秒,⊙O1與⊙O2外切.
科目:初中數學 來源: 題型:
【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個矩形花圃.如圖所示,矩形花圃的一邊利用長10米的院墻,另外三條邊用籬笆圍成,籬笆的總長為32米.設AB的長為x米,矩形花圃的面積為y平方米.
(1)用含有x的代數式表示BC的長,BC= ;
(2)求y與x的函數關系式,寫出自變量x的取值范圍;
(3)當x為何值時,y有最大值?最大值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市有三個景區(qū)是人們節(jié)假日游玩的熱點景區(qū),某學校對七(1)班學生“五一”小長假隨父母到這三個景區(qū)游玩的計劃做了全面調查,調查分四個類別,A:三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩,現根據調查結果繪制了如下不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合圖中信息解答下列問題:
(1)九(1)班現有學生__________人,在扇形統(tǒng)計圖中表示“B類別”的扇形的圓心角的度數為__________;
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校七年級有1000名學生,求計劃“五一”小長假隨父母到這三個景區(qū)游玩的學生多少名?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線相交于點D,DE⊥AB交AB的延長線于點E,DF⊥AC于點F,現有下列結論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在⊙O中,弦AB、CD互相垂直,垂足為E,點M在CD上,連接AM并延長交BC于點F,交圓上于點G,連接AD,AD=AM.
(1)如圖1,求證:AG⊥BC;
(2)如圖2,連接EF,DG,求證:EF∥DG;
(3)如圖3,在(2)的條件下,連接BG,若∠ABG=2∠BAG,EF=15,AB=32,求BG長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,從A地到B地的公路需要經過C地,根據規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,∠CAB=34°,∠CBA=45°,求改直后公路AB的長(結果精確到0.1千米)
(參考數據:sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC,DC分別交于點G,F,H為CG的中點,連接DE,EH,DH,FH.下列結論中結論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若,則S△EDH=13S△CFH .
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】國慶70周年前夕,網店銷售 三種規(guī)格的手搖小國旗,其部分相關信息如下表:
型號 | 規(guī)格(mm) | 批發(fā)價(元/面) | 建議零售價(元/面) |
大號 | 45x30 | 2.00 | |
中號 | 28x20 | 1.50 | |
小號 | 22x14 |
已知大號小國旗比中號的批發(fā)價貴0.3元,小號小國旗比中號的批發(fā)價便宜0.1元某小商品零售商店,第一次用 380元購進了一批大號小國旗,緊接著又用780元購進了第二 批中號小國旗,第二批的數量是第一批的3倍.
(1)求三種型號小國旗的批發(fā)價分別是多少元?
(2)該商店很快又購進了第三批小號小國旗1200面.如果三批小國旗全部按網店建議零 售價銷售完后,該零售商店獲利不少于1980 元,那么小號小國旗的建議零售價至少 為多少元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com