【題目】如圖,已知AB、CD、EF相交于點(diǎn)O,EF⊥AB,OG為∠COF的平分線,OH為∠DOG的平分線.
(1)若∠AOC∶∠COG=4∶7,求∠DOF的大;
(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.
【答案】(1)∠DOF=110° (2)∠COH=107.5°
【解析】本題考查對(duì)頂角的定義、性質(zhì)垂直定義、角平分線的定義和根據(jù)圖形寫出角的和差關(guān)系式
解:(1)∵AB、CD、EF相交于點(diǎn)O,∴∠AOC=∠BOD
∵EF⊥AB ∴∠AOF=∠BOF=∠AOE=∠BOE=90°
∵OG為∠COF的平分線,∴∠COG=∠GOF
∵∠AOC∶∠COG=4∶7
∴∠AOC∶∠GOF=4∶7,∠AOC∶∠COF=4∶14 ,∠AOC∶∠AOF=4∶18
∴∠AOC=∠BOD=20°
∠DOF=∠BOD+∠BOF=20°90°=110°
(2)由(1)知:∠AOC=∠BOD ,∠COG=∠GOF,∠AOF=∠BOF=90°
∵OH為∠DOG的平分線.∴∠DOH=∠GOH
∵∠AOC∶∠DOH=8∶29,∴∠BOD∶∠BOH=8∶21;
設(shè)∠BOD=8k,∠COG=∠GOF=x,則∠GOH=29k,∠BOH=21k ,由∠AOF=∠BOF=90°得
8k+2x=29k+21k-x 解得x=14k ,
代入29k+21k-14k=90°解得k=2.5°
∠COH=∠COH+∠COH+∠COH=14k+29k=43k=43×2.5°=107.5°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量某建筑物BC的高度,小明先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地而上向建筑物前進(jìn)了50m到達(dá)D處,此時(shí)遇到一斜坡,坡度i=1: ,沿著斜坡前進(jìn)20米到達(dá)E處測(cè)得建筑物頂部的仰角是45°,(坡度i=1: 是指坡面的鉛直高度FE與水平寬度DE的比).請(qǐng)你計(jì)算出該建筑物BC的高度.(取=1.732,結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列關(guān)系式中,y不是x的函數(shù)的是( )
A.y=x2
B.|y|=x
C.y=2x+1
D.y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,E是AB的中點(diǎn),且DE⊥AB,AB=10,則∠ABC= , 對(duì)角線AC的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com