【題目】如圖,在四邊形ABCD中,AD//BCAB=10,BC=6,AC=AD=8.

(1)求∠ACB的度數(shù);
(2)求CD邊的長.

【答案】
(1)

解:如圖2.

∵ △ABC中,AB=10,BC=6,AC =8,

.

∴ △ABC是直角三角形,


(2)

解:∵ AD//BC,

.

∵ 在Rt△ACD中, ,AC=AD=8,


【解析】(1) △ABC中,由已知條件根據(jù)勾股定理逆定理得出AC2+BC2=AB2 ;從而得到 ∠ACB=90°.
(2)由 AD//BC,得到∠CAD=∠ACB=90° ;在Rt△ACD中,再根據(jù)勾股定理得到 CD2=AC2+AD2 , 從而求出CD的長度.
【考點(diǎn)精析】關(guān)于本題考查的平行線的性質(zhì)和勾股定理的概念,需要了解兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,書桌上的一種新型臺(tái)歷和一塊主板AB、一個(gè)架板AC和環(huán)扣(不計(jì)寬度,記為點(diǎn)A)組成,其側(cè)面示意圖為△ABC,測(cè)得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書寫記事方便,須調(diào)整臺(tái)歷的擺放,移動(dòng)點(diǎn)C至C′,當(dāng)∠C′=30°時(shí),求移動(dòng)的距離即CC′的長(或用計(jì)算器計(jì)算,結(jié)果取整數(shù),其中 =1.732, =4.583)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖16,以扇形OAB的頂點(diǎn)O為原點(diǎn),半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點(diǎn)B的坐標(biāo)為(2,0),若拋物線y=+k與扇形OAB的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn) 在直線 上,過點(diǎn) y軸,交直線 于點(diǎn) ,以 為直角頂點(diǎn), 為直角邊,在 的右側(cè)作等腰直角三角形 ;再過點(diǎn) y軸,分別交直線 , 兩點(diǎn),以 為直角頂點(diǎn), 為直角邊,在 的右側(cè)作等腰直角三角形 ,…,按此規(guī)律進(jìn)行下去,點(diǎn) 的橫坐標(biāo)為 , 點(diǎn) 的橫坐標(biāo)為 , 點(diǎn) 的橫坐標(biāo)為 . (用含n的式子表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,

在由邊長都為1個(gè)單位長度的小正方形組成的 正方形網(wǎng)格中,點(diǎn)A , B , P 都在格點(diǎn)上.請(qǐng)畫出以AB為邊的格點(diǎn)四邊形(四個(gè)頂點(diǎn)都在格點(diǎn)的四邊形),要求同時(shí)滿足以下條件:
條件1:點(diǎn)P到四邊形的兩個(gè)頂點(diǎn)的距離相等;
條件2:點(diǎn)P在四邊形的內(nèi)部或其邊上;
條件3:四邊形至少一組對(duì)邊平行.
(1)在圖①中畫出符合條件的一個(gè) ABCD , 使點(diǎn)P在所畫四邊形的內(nèi)部;
(2)在圖②中畫出符合條件的一個(gè)四邊形ABCD , 使點(diǎn)P在所畫四邊形的邊上;
(3)在圖③中畫出符合條件的一個(gè)四邊形ABCD , 使∠D=90°,且∠A≠90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x﹣22﹣2的頂點(diǎn)坐標(biāo)是( )

A.2,﹣2B.﹣2﹣2C.2,2D.﹣2,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(2,0),拋物線的對(duì)稱軸x=-1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.

(1)求拋物線的解析式;

(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形BOCF的面積最大,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)平行于DE的一條動(dòng)直線l與直線BC相交于點(diǎn)P,與拋物線相交于點(diǎn)Q,若以D、E、P、Q為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 ,則化簡 的結(jié)果是( )
A.4
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在期中考試中,同學(xué)甲、乙、丙、丁分別獲得第一、第二、第三、第四名.在期末考試中,他們又是班上的前四名.如果他們當(dāng)中只有一位的排名與期中考試中的排名相同,那么排名情況有( 。┓N可能.

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

同步練習(xí)冊(cè)答案