已知3a=7,求3a+2的值

答案:
解析:

  解:因?yàn)?a=7,所以3a+2=3a×32=7×32=63

  解題指導(dǎo):由同底數(shù)冪的乘法運(yùn)算性質(zhì)的逆用,3a+2=3a×32可以代入求得答案


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣西玉林市中考數(shù)學(xué)試卷 題型:044

已知拋物線y=ax2-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求A、B的坐標(biāo);

(2)過點(diǎn)D作DH丄y軸于點(diǎn)H,若DH=HC,求a的值和直線CD的解析式;

(3)在第(2)小題的條件下,直線CD與x軸交于點(diǎn)E,過線段OB的中點(diǎn)N作NF丄x軸,并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣西省玉林防城港中考數(shù)學(xué)試題 題型:044

已知拋物線y=ax2-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求A、B的坐標(biāo);

(2)過點(diǎn)D作DH丄y軸于點(diǎn)H,若DH=HC,求a的值和直線CD的解析式;

(3)在第(2)小題的條件下,直線CD與x軸交于點(diǎn)E,過線段OB的中點(diǎn)N作NF丄x軸,并交直線CD于點(diǎn)F,則直線NF上是否存在點(diǎn)M,使得點(diǎn)M到直線CD的距離等于點(diǎn)M到原點(diǎn)O的距離?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1的函數(shù)解析式為y=ax2+bx-3a(b<0),若拋物線C1經(jīng)過點(diǎn)(0,-3),方程ax2+bx-3a=0的兩根為x1,x2,且|x1-x2|=4.

⑴求拋物線C1的頂點(diǎn)坐標(biāo). 新 課 標(biāo) 第 一 網(wǎng)

⑵已知實(shí)數(shù)x>0,請證明x+≥2,并說明x為何值時(shí)才會(huì)有x+=2.

⑶若將拋物線先向上平移4個(gè)單位,再向左平移1個(gè)單位后得到拋物線C2,設(shè)A(m,y1),B(n,y2)是C2上的兩個(gè)不同點(diǎn),且滿足:∠AOB=90︒,m>0,n<0.請你用含m的表達(dá)式表示出△AOB的面積S,并求出S的最小值及S取最小值時(shí)一次函數(shù)OA的函數(shù)解析式.

(參考公式:在平面直角坐標(biāo)系中,若P(x1,y1),Q(x2,y2),則P,Q兩點(diǎn)間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線的函數(shù)解析式為yax2bx-3ab<0),若這條拋物線經(jīng)過點(diǎn)(0,-3),方程ax2bx-3a=0的兩根為x1,x2,且|x1x2|=4.

⑴求拋物線的頂點(diǎn)坐標(biāo).

⑵已知實(shí)數(shù)x>0,請證明x≥2,并說明x為何值時(shí)才會(huì)有x=2.

查看答案和解析>>

同步練習(xí)冊答案