如圖,一個無蓋的正方體盒子的棱長為2,BC的中點為M,一只螞蟻從盒外的B點沿正方形的表面爬到盒內(nèi)的M點,螞蟻爬行的最短距離是( 。
分析:根據(jù)已知得出螞蟻從盒外的B點沿正方形的表面爬到盒內(nèi)的M點,螞蟻爬行的最短距離是如圖BM的長度,進(jìn)而利用勾股定理求出即可.
解答:解:∵螞蟻從盒外的B點沿正方形的表面爬到盒內(nèi)的M點,
∴螞蟻爬行的最短距離是如圖BM的長度,
∵無蓋的正方體盒子的棱長為2,BC的中點為M,
∴A1B=2+2=4,A1M=1,
∴BM=
42+12
=
17

故選:C.
點評:此題主要考查了平面展開圖的最短路徑問題,利用圖形得出最短路徑為BM是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖①,一個無蓋的正方體盒子的棱長為10厘米,頂點C1處有一只昆蟲甲,在盒子的內(nèi)部頂點A處有一只昆蟲乙.(盒壁的厚度忽略不計)
(1)假設(shè)昆蟲甲在頂點C1處靜止不動,如圖①,在盒子的內(nèi)部我們先取棱BB1的中點E,再連接AE、EC1.蟲乙如果沿路徑A-E-C1爬行,那么可以在最短的時間內(nèi)捕捉到昆蟲甲.仔細(xì)體會其中的道理,并在圖①中畫出另一條路徑,使昆蟲乙從頂點A沿這條路徑爬行,同樣可以在最短的時間內(nèi)捕捉到昆蟲甲;(請簡要說明畫法)
(2)如圖②,假設(shè)昆蟲甲從頂點C1,以1厘米/秒的速度在盒子的內(nèi)部沿棱C1C向下爬行,同時昆蟲乙從頂點A以2厘米/秒的速度在盒壁上爬行,那么昆蟲乙至少需要多長時間才能捕捉到昆蟲甲?(精確到1秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•山西模擬)如圖①,一個無蓋的正方體盒子的棱長為10厘米,頂點C1處有一只昆蟲甲,在盒子的內(nèi)部頂點A處有一只昆蟲乙.(盒壁的厚度忽略不計)
(1)假設(shè)昆蟲甲在頂點C1處靜止不動,在圖①畫出一條路徑,使昆蟲乙從頂點A沿這條路徑爬行,可以在最短的時間內(nèi)捕捉到昆蟲甲.(請簡要說明畫法)
(2)如圖②,假設(shè)昆蟲甲靜止不動,昆蟲乙從頂點A以2厘米/秒的速度在盒壁上爬行,那么昆蟲乙至少需要多長時間才能捕捉到昆蟲甲?
(3)如圖②,假設(shè)昆蟲甲從頂點C1,以1厘米/秒的速度在盒子的內(nèi)部沿棱C1C向下爬行,同時昆蟲乙從頂點A以2厘米/秒的速度在盒壁上爬行,那么昆蟲乙至少需要多長時間才能捕捉到昆蟲甲?(精確到1s).參考數(shù)據(jù):
19
≈4.4,
21
≈4.6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖表示一個無蓋的正方體紙盒,它的下底面標(biāo)有字母“M”,沿圖中的粗線將其剪開展成平面圖形,這個平面展開圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年蘇教版初中數(shù)學(xué)七年級上5.3展開與折疊練習(xí)卷(解析版) 題型:選擇題

如圖,有一個無蓋的正方體紙盒,下底面標(biāo)有字母“M”,沿圖中粗線將其剪開展成平面圖形,想一想,這個平面圖形是(  )

 

 

 

查看答案和解析>>

同步練習(xí)冊答案