【題目】如圖,直角梯形 ABCD 中,ADBCABBCAD3,BC4.將腰 CD D 為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn) 90°至 DE,連結(jié) AE,則ADE 的面積是(

A.B.2C.D.不能確定

【答案】A

【解析】

EFADAD延長線于點F,作DGBC于點G,首先利用旋轉(zhuǎn)的性質(zhì)證明△DCG與△DEF全等,再根據(jù)全等三角形對應(yīng)邊相等可得EF的長,即△ADE的高,即可求出三角形ADE的面積.

解:如圖所示,作EFADAD延長線于點F,作DGBC于點G,

CDD為中心逆時針旋轉(zhuǎn)90°至ED,

∴∠EDF+CDF=90°,DE=CD,

又∵∠CDF+CDG=90°,

∴∠CDG=EDF,

∴△DCG≌△DEFAAS),

EF=CG

AD=3,BC=4,

CG=BCAD=43=1,

EF=1

∴△ADE 的面積是.

故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下面三行數(shù)

3,927,81…

13,9,27…

2,1026,82…

(1)第①行數(shù)按什么規(guī)律排列?

(2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系?

(3)設(shè)x,y,z分別為第①②③ 行的2019個數(shù),求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC,AB=AC=6,BAC=108°,D在邊BC,BAD=36°.

(1)求證:BAD∽△BCA;

(2)AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形一條對角線所在直線上的點,如果到這條對角線的兩端點的距離不相等,但到另一對角線的兩個端點的距離相等,則稱這點為這個四邊形的準等距點.如圖1,點P為四邊形ABCD對角線AC所在直線上的一點,PDPB,PAPC,則點P為四邊形ABCD的準等距點.

1)如圖2,畫出菱形ABCD的一個準等距點.

2)如圖3,在四邊形ABCD中,PAC上的點,PAPC,延長BPCD于點E,延長DPBC于點F,且∠CDF=∠CBE,CECF.求證:點P是四邊形ABCD的準等距點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABD中,∠ABD=90°,AB=1,sin∠ADB=,點EAD的中點,線段BA繞點B順時針旋轉(zhuǎn)到BC(旋轉(zhuǎn)角小于180°),使BCAD.連接DC,BE

(1)則四邊形BCDE是________,并證明你的結(jié)論;

(2)求線段AB旋轉(zhuǎn)過程中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】未成年人思想道德建設(shè)越來越受到社會的關(guān)注.某青少年研究機構(gòu)隨機調(diào)查了某校 100名學(xué)生寒假花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費觀.根據(jù)調(diào)查 數(shù)據(jù)制成了如下的頻數(shù)分布表(部分空格未填).

某校 100 名學(xué)生寒假花零花錢數(shù)量的頻數(shù)分布表:

1)完成該頻數(shù)分布表;

2)畫出頻數(shù)分布直方圖.

3)研究認為應(yīng)對消費 150 元以上的學(xué) 生提出勤儉節(jié)約的建議.試估計應(yīng)對該校1200 學(xué)生中約多少名學(xué)生提出該項建議?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了“兩段式欄桿”,如圖1所示,點A是欄桿轉(zhuǎn)動的支點,點E是欄桿兩段的聯(lián)結(jié)點當車輛經(jīng)過時,欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示欄桿寬度忽略不計,其中米,那么適合該地下車庫的車輛限高標志牌為

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點M(﹣3,m)是一次函數(shù)y=x+1與反比例函數(shù)y=(k≠0)的圖象的一個交點.

(1)求反比例函數(shù)表達式;

(2)點P是x軸正半軸上的一個動點,設(shè)OP=a(a2),過點P作垂直于x軸的直線,分別交一次函數(shù),反比例函數(shù)的圖象于點A,B,過OP的中點Q作x軸的垂線,交反比例函數(shù)的圖象于點C,ABC′與ABC關(guān)于直線AB對稱.

當a=4時,求ABC′的面積;

當a的值為   時,AMC與AMC′的面積相等.

查看答案和解析>>

同步練習(xí)冊答案