【題目】機(jī)器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O上.
(1)求弦BC的長(zhǎng);
(2)求圓O的半徑長(zhǎng).
(本題參考數(shù)據(jù):sin 67.4° =,cos 67.4°=,tan 67.4° =)
【答案】(1)24,(2)15.
【解析】
試題(1)過(guò)O作OD⊥AB于D,可得∠A=67.4°,在Rt△AOD中,利用∠AOB的三角函數(shù)值即可求出OD,AD的長(zhǎng);
(2)求出BD的長(zhǎng),根據(jù)勾股定理即可求出BO的長(zhǎng).
(1)連接OB,過(guò)點(diǎn)O作OD⊥AB,
∵AB∥SN,∠AON=67.4°,
∴∠A=67.4°.
∴OD=AOsin 67.4°=13×=12.
又∵BE=OD,
∴BE=12.
根據(jù)垂徑定理,BC=2×12=24(米).
(2)∵AD=AOcos 67.4°=13×=5,
∴OD=,
BD=AB-AD=14-5=9.
∴BO=.
故圓O的半徑長(zhǎng)15米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程x2-(k+2)x+k-1=0
(1)若方程的一個(gè)根為 -1,求的值和方程的另一個(gè)根;
(2)求證:不論取何值,該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,于,平分,且于,與相交于點(diǎn),是邊的中點(diǎn),連接與相交于點(diǎn),下列結(jié)論正確的有( )個(gè)
①;②;③;④是等腰三角形;⑤.
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(x2﹣4x+2)(x2﹣4x+6)+4進(jìn)行因式分解的過(guò)程
解:設(shè)x2﹣4x=y,
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16。ǖ诙剑
=(y+4)2(第三步)
=(x2﹣4x+4)2(第四步)
(1)該同學(xué)第二步到第三步運(yùn)用了因式分解的 (填序號(hào)).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學(xué)在第四步將y用所設(shè)中的x的代數(shù)式代換,得到因式分解的最后結(jié)果.這個(gè)結(jié)果是否分解到最后? .(填“是”或“否”)如果否,直接寫(xiě)出最后的結(jié)果 .
(3)請(qǐng)你模仿以上方法嘗試對(duì)多項(xiàng)式(x2﹣2x)(x2﹣2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅星公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的 日銷(xiāo)售量(件)與時(shí)間(天)的關(guān)系如下表:
時(shí)間(天) | 1 | 3 | 6 | 10 | 36 | … |
日銷(xiāo)售量(件) | 94 | 90 | 84 | 76 | 24 | … |
未來(lái)40天內(nèi),前20天每天的價(jià)格y1(元/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y1=t+25(1≤t≤20且t為整數(shù));后20天每天的價(jià)格y2(原/件)與t時(shí)間(天)的函數(shù)關(guān)系式為:y2=—t+40(21≤t≤40且t為整數(shù)).下面我們來(lái)研究 這種商品的有關(guān)問(wèn)題.
(1)認(rèn)真分析上表中的數(shù)量關(guān)系,利用學(xué)過(guò)的一次函數(shù)、二次函數(shù) 、反比例函數(shù)的知識(shí)確定一個(gè)滿(mǎn)足這些數(shù)據(jù)之間的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中那一天的銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中該公司決定每銷(xiāo)售一件商品就捐贈(zèng)a元利潤(rùn)(a<4)給希望工程,公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷(xiāo)售利潤(rùn)隨時(shí)間t的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車(chē)同時(shí)出發(fā),甲車(chē)以每小時(shí)60千米/時(shí)的速度沿此公路從地勻速開(kāi)往地,乙車(chē)從地沿此公路勻速開(kāi)往地,兩車(chē)分別到達(dá)目的地后停止甲、乙兩車(chē)相距的路程(千米)與甲車(chē)的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示:
(1)乙年的速度為______千米/時(shí),_____,______.
(2)求甲、乙兩車(chē)相遇后與之間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)l1:y=﹣2x+6與坐標(biāo)軸交于A,B兩點(diǎn),直線(xiàn)l2:y=kx+2(k>0)與坐標(biāo)軸交于點(diǎn)C,D,直線(xiàn)l1,l2與相交于點(diǎn)E.
(1)當(dāng)k=2時(shí),求兩條直線(xiàn)與x軸圍成的△BDE的面積;
(2)點(diǎn)P(a,b)在直線(xiàn)l2:y=kx+2(k>0)上,且點(diǎn)P在第二象限.當(dāng)四邊形OBEC的面積為時(shí).
①求k的值;
②若m=a+b,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長(zhǎng)度為何?( )
A. 1 B. 2 C. 2﹣2 D. 4﹣2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com