如圖,在△ABC中,∠ACB=90°AC=BC=6cm,正方形DEFG的邊長為2cm,其一邊EF在BC所在的直線L上,開始時點F與點C重合,讓正方形DEFG沿直線L向右以每秒1cm的速度作勻速運動,最后點E與點B重合.
(1)請直接寫出該正方形運動6秒時與△ABC重疊部分面積的大小;
(2)設運動時間為x(秒),運動過程中正方形DEFG與△ABC重疊部分的面積為y(cm2).
①在該正方形運動6秒后至運動停止前這段時間內,求y與x之間的函數(shù)關系式;
②在該正方形整個運動過程中,求當x為何值時,y=
1
2
(1)如圖1,重疊部分的面積為
1
2
×22=2cm2

(2)①當正方形停止運動時,點E與點B重合,此時x=8,如圖2,

當6<x<8時,設正方形DEFG與AB交于點M,在Rt△MEB中,∠MEB=90°,ME=EB=CB-CE=6-(x-2)=8-x
∴重疊部分面積:y=S△MEB=
1
2
•EB2=
1
2
(8-x)2
②在正方形運動過程中,分四種情況:當0<x<2時,如圖3,

重疊部分面積y=2x,且0<y<4
令y=
1
2
,得2x=
1
2
,解得x=
1
4

當2≤x≤4時,如圖4,

重疊部分面積都為4cm2,此時y≠
1
2

當4<x≤6時,如圖5,

易見重疊部分面積y隨x的增大而減小
由上面得出的結論知當x=4時,y=4;由(1)知當x=6時,y=2
∴2≤y<4,此時y≠
1
2

當6<x<8時,由(2)①已求得y=
1
2
(8-x)2=
1
2
(x-8)2,
∵y隨x的增大而減小,又當x=6時,y=2,當x=8時,y=0時,
∴0<y<2
令y=
1
2
(x-8)2=
1
2
,解得x1=7,x2=9(不合題意,舍去)
∴x=7
綜上,當x=
1
4
或x=7時,y=
1
2
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2-4ax+c(a≠0)經(jīng)過A(0,-1),B(5,0)兩點,點P是拋物線上的一個動點,且位于直線AB的下方(不與A,B重合),過點P作直線PQ⊥x軸,交AB于點Q,設點P的橫坐標為m.
(1)求a,c的值;
(2)設PQ的長為S,求S與m的函數(shù)關系式,寫出m的取值范圍;
(3)以PQ為直徑的圓與拋物線的對稱軸l有哪些位置關系?并寫出對應的m取值范圍.(不必寫過程)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線l經(jīng)過A(3,0),B(0,3)兩點,且與二次函數(shù)y=x2+1的圖象,在第一象限內相交于點C.求:
(1)△AOC的面積;
(2)二次函數(shù)圖象的頂點與點A、B組成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=ax2+bx經(jīng)過點A(-3,-3)和點P(x,0),且x≠0.
(1)若該拋物線的對稱軸經(jīng)過點A,如圖,請通過觀察圖象,指出此時y的最______值,值是______;
(2)若x=-4,求拋物線的解析式;
(3)請觀察圖象:當x______,y隨x的增大而增大;當x______時,y>0;當x______時,y<0.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一個小服裝廠生產(chǎn)某種風衣,售價P(元/件)與月銷售量x(件)之間的關系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠的月產(chǎn)量為多大時,獲得的月利潤為1300元?
(2)當月產(chǎn)量為多少時,可獲得最大月利潤?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:點P(a+1,a-1)關于x軸的對稱點在反比例函數(shù)y=-
8
x
(x>0)的圖象上,y關于x的函數(shù)y=k2x2-(2k+1)x+1的圖象與坐標軸只有兩個不同的交點A﹑B,求P點坐標和△PAB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用一塊長為50cm、寬為30cm的長方形鐵片制作一個無蓋的盒子,若在鐵片的四個角截去四個相同的小正方形,設小正方形的邊長為xcm.
(1)底面的長AB=______cm,寬BC=______cm(用含x的代數(shù)式表示)
(2)當做成盒子的底面積為300cm2時,求該盒子的容積.
(3)該盒子的側面積S是否存在最大的情況?若存在,求出x的值及最大值是多少?若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,AB=6米,BC=8米,動點P以2米/秒的速度從點A出發(fā),沿AC向點C移動,同時動點Q以1米/秒的速度從點C出發(fā),沿CB向點B移動,設P、Q兩點移動t秒(0<t<5)后,四邊形ABQP的面積為S米2
(1)求面積S與時間t的關系式;
(2)在P、Q兩點移動的過程中,四邊形ABQP與△CPQ的面積能否相等?若能,求出此時點P的位置;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案