【題目】已知點(diǎn)O是正方形ABCD對角線BD的中點(diǎn).
(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.
①∠AEM=∠FEM; ②點(diǎn)F是AB的中點(diǎn);
(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請判斷△EFC的形狀,并說明理由;
(3)如圖3,若E是OD上的動點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請猜想的值(請直接寫出結(jié)論).
【答案】(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).
【解析】
試題分析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE 得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x, DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,從而AF=AB,得到點(diǎn)F是AB的中點(diǎn).;(2)過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AME≌△FME(SAS),從而可得△EFC是等腰直角三角形.(3)方法同第(2)小題.過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),再證明△AEM≌△FEM (ASA),得AM=FM,設(shè)AM=x,則AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.
試題解析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,則四邊形MBGE為正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四邊形ABCD為正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB, ∴∠AEM=∠FEM.
②設(shè)AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四邊形AMND為矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴點(diǎn)F是AB的中點(diǎn).
(2)△EFC是等腰直角三角形.過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG,設(shè)AM=x,則DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.
(3) 過點(diǎn)E作EM⊥AB,垂足為M,延長ME交CD于點(diǎn)N,過點(diǎn)E作EG⊥BC,垂足為G.則△AEM≌△CEG(HL),∴∠AEM=∠CEG. ∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.設(shè)AM=x,則AF=2x,DN =x,DE=x,∴BD=x. ∴AB=x.∴=2x:x=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為 ,C的坐標(biāo)為 ,直角頂點(diǎn)B在第四象限,線段AC與x軸交于點(diǎn)D.將線段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°至DE.
(1)直接寫出點(diǎn)B、D、E的坐標(biāo)并求出直線DE的解析式.
(2)如圖②,點(diǎn)P以每秒1個單位的速度沿線段AC從點(diǎn)A運(yùn)動到點(diǎn)C的過程中,過點(diǎn)P作與x軸平行的直線PG,交直線DE于點(diǎn)G,求與△DPG的面積S與運(yùn)動時(shí)間t的函數(shù)關(guān)系式,并求出自變量t的取值范圍.
(3)如圖③,設(shè)點(diǎn)F為直線DE上的點(diǎn),連接AF,一動點(diǎn)M從點(diǎn)A出發(fā),沿線段AF以每秒1個單位的速度運(yùn)動到F,再沿線段FE以每秒 個單位的速度運(yùn)動到E后停止.當(dāng)點(diǎn)F的坐標(biāo)是多少時(shí),是否存在點(diǎn)M在整個運(yùn)動過程中用時(shí)最少?若存在,請求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】無錫正在建設(shè)的地鐵3號線總長約28800m,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道一次函數(shù) 與 的圖象關(guān)于 軸對稱,所以我們定義:函數(shù) 與 互為“鏡子”函數(shù).
(1)請直接寫出函數(shù) 的“鏡子”函數(shù)
(2)如果一對“鏡子”函數(shù) 與 的圖象交于點(diǎn) ,且與 軸交于 、 兩點(diǎn),如圖所示,若 ,且 的面積是 ,求這對“鏡子”函數(shù)的解析式.
(3)若點(diǎn) 是 軸上的一個動點(diǎn),當(dāng) 為等腰三角形時(shí),直接寫出點(diǎn) 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司銷售部為了定制下個月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )
A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用二元一次方程組解應(yīng)用題:甲、乙兩地相距 ,一輛汽車和一輛拖拉機(jī)同時(shí)由兩地以各自的速度勻速相向而行, 小時(shí)后相遇.相遇后,拖拉機(jī)以其原速繼續(xù)前進(jìn),汽車在相遇處停留 小時(shí)后調(diào)轉(zhuǎn)車頭以其原速返回,在汽車再次出發(fā)半小時(shí)追上拖拉機(jī).這時(shí),汽車、拖拉機(jī)各自走了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在今年的湘潭市“黨和人民滿意的好老師”的評選活動中,截止到5月底,王老師獲得網(wǎng)絡(luò)點(diǎn)贊共計(jì)183000個,用科學(xué)記數(shù)法表示這個數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com