【題目】我們知道一次函數(shù) 的圖象關(guān)于 軸對稱,所以我們定義:函數(shù) 互為“鏡子”函數(shù).

(1)請直接寫出函數(shù) 的“鏡子”函數(shù)
(2)如果一對“鏡子”函數(shù) 的圖象交于點(diǎn) ,且與 軸交于 、 兩點(diǎn),如圖所示,若 ,且 的面積是 ,求這對“鏡子”函數(shù)的解析式.
(3)若點(diǎn) 軸上的一個(gè)動點(diǎn),當(dāng) 為等腰三角形時(shí),直接寫出點(diǎn) 的坐標(biāo).

【答案】
(1)解:根據(jù)題意,“鏡子函數(shù)”為關(guān)于 軸對稱的兩個(gè)函數(shù),

∴原函數(shù)的“鏡子函數(shù)”為


(2)解:根據(jù)題意, 為一對“鏡子函數(shù)”.

,即 為等腰直角三角形,

,

又∵

∴解得 ,

那么


(3)解:根據(jù)等腰三角形的性質(zhì),分情況,

,

∴以 為頂點(diǎn),則 ,得 ,

為頂點(diǎn),則 ,得 ,

為頂點(diǎn),則 ,得


【解析】(1)根據(jù)“鏡子”函數(shù)的定義,即可得出結(jié)果。
(2)(2)根據(jù)已知條件可證得△ABC是等腰直角三角形,得出OA=OB=OC,再根據(jù)△ABC的面積是8,就可得出點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出這對“鏡子函數(shù)”的解析式。
(3)根據(jù)等腰三角形的性質(zhì),分為三種情況討論:當(dāng)點(diǎn)A為頂點(diǎn)時(shí);當(dāng)點(diǎn)B為頂點(diǎn)時(shí);當(dāng)D為頂點(diǎn)時(shí),根據(jù)AB、AO、BO的長,即可求出點(diǎn)D的坐標(biāo)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1、l2、l3互相平行,直線l1與l2的距離是4cm,直線l2與l3的距離是6cm,那么直線l1與l3的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC內(nèi)一點(diǎn)P滿足PA=PB=PC,則點(diǎn)P一定是ABC的(

A. 三邊垂直平分線的交點(diǎn) B. 三條內(nèi)角平分線的交點(diǎn)

C. 三條高的交點(diǎn) D. 三條中線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)O是正方形ABCD對角線BD的中點(diǎn).

(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得CEF=90°,過點(diǎn)E作MEAD,交AB于點(diǎn)M,交CD于點(diǎn)N.

AEM=FEM; 點(diǎn)F是AB的中點(diǎn);

(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請判斷EFC的形狀,并說明理由;

(3)如圖3,若E是OD上的動點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EFCE,交AB于點(diǎn)F,當(dāng)時(shí),請猜想的值(請直接寫出結(jié)論).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是O的直徑,過O點(diǎn)作OPAB,交弦AC于點(diǎn)D,交O于點(diǎn)E,且使PCA=ABC.

(1)求證:PC是O的切線;

(2)若P=60°,PC=2,求PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】要判斷一個(gè)學(xué)生的數(shù)學(xué)考試成績是否穩(wěn)定,那么需要知道他最近連續(xù)幾次數(shù)學(xué)考試成績的(
A.方差
B.平均數(shù)
C.中位數(shù)
D.眾數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:m8÷m3=____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題

(1)問題
如圖1,點(diǎn)A為線段BC外一動點(diǎn),且BC=a,AB=b.
填空:當(dāng)點(diǎn)A位于時(shí),線段AC的長取得最大值,且最大值為(用含a,b的式子表示)
(2)應(yīng)用
點(diǎn)A為線段BC外一動點(diǎn),且BC=3,AB=1,如圖2所示,分別以AB,AC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE.
①請找出圖中與BE相等的線段,并說明理由;
②直接寫出線段BE長的最大值.
(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動點(diǎn),且PA=2,PM=PB,∠BPM=90,請直接寫出線段AM長的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案