【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D是該拋物線的頂點(diǎn),分別連接AC、CD、AD.
(1)求拋物線的函數(shù)解析式以及頂點(diǎn)D的坐標(biāo);
(2)在拋物線上取一點(diǎn)P(不與點(diǎn)C重合)、并分別連接PA、PD,當(dāng)△PAD的面積與△ACD的面積相等時(shí),求點(diǎn)P的坐標(biāo):
【答案】(1)拋物線的解析式為y=﹣x2+2x+3,頂點(diǎn)D的坐標(biāo)為(1,4);(2)點(diǎn)P的坐標(biāo)為(,2+1),(﹣,﹣2+1).
【解析】
(1)根據(jù)拋物線y=ax2+bx+3與x軸交于A(﹣1,0)和B(3,0)兩點(diǎn),可以求得該拋物線的解析式,然后化為頂點(diǎn)式即可求得頂點(diǎn)D的坐標(biāo);
(2)根據(jù)題意,作出合適的輔助線,利用平移的性質(zhì)即可求得點(diǎn)P的坐標(biāo).
解:(1)設(shè)拋物線的函數(shù)解析式為y=a(x+1)(x﹣3),
∵y=ax2+bx+3,
∴﹣3a=3,得a=﹣1,
∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,
即該拋物線的解析式為y=﹣x2+2x+3,頂點(diǎn)D的坐標(biāo)為(1,4);
(2)∵拋物線的解析式為y=﹣x2+2x+3,與y軸交于點(diǎn)C,
∴點(diǎn)C的坐標(biāo)為(0,3),
設(shè)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)D(1,4)的直線解析式為y=kx+m,
,得 ,
即直線AD的函數(shù)解析式為y=2x+2,
設(shè)直線AD與y軸交于點(diǎn)E,則點(diǎn)E的坐標(biāo)為(0,2),
則CE=OC﹣OE=3﹣2=1,
過(guò)點(diǎn)C作直線l1∥AD,則直線l1的解析式為y=2x+3,
令﹣x2+2x+3=2x+3,得x1=x2=0,
即拋物線與直線l1只有一個(gè)交點(diǎn)為(0,3),在直線AD上方的拋物線上不存在△PAD的面積與△ACD的面積相等的點(diǎn)P;
將直線AD沿y軸向下平移一個(gè)單位長(zhǎng)度得到直線l2,則直線l2的解析式為y=2x+1,
令﹣x2+2x+3=2x+1,得x3=,x4=﹣,
則點(diǎn)P1為(,2+1),點(diǎn)P2為(﹣,﹣2+1),
即點(diǎn)P的坐標(biāo)為(,2+1),(﹣,﹣2+1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)若此函數(shù)圖象與軸只有一個(gè)交點(diǎn),試寫(xiě)出與滿足的關(guān)系式.
(2)若,點(diǎn),,是該函數(shù)圖象上的3個(gè)點(diǎn),試比較,,的大小.
(3)若,當(dāng)時(shí),函數(shù)隨的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與y=﹣與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接AC、BC,點(diǎn)D是線段AB上一點(diǎn),且AD=CA,連接CD.
(1)如圖2,點(diǎn)P是直線BC上方拋物線上的一動(dòng)點(diǎn),在線段BC上有一動(dòng)點(diǎn)Q,連接PC、PD、PQ,當(dāng)△PCD面積最大時(shí),求PQ+CQ的最小值;
(2)將過(guò)點(diǎn)D的直線繞點(diǎn)D旋轉(zhuǎn),設(shè)旋轉(zhuǎn)中的直線l分別與直線AC、直線CO交于點(diǎn)M、N,當(dāng)△CMN為等腰三角形時(shí),直接寫(xiě)出CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的柑橘,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元;市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以45元的價(jià)格銷售,平均每天銷售105箱;每箱以50元的價(jià)格銷售,平均每天銷售90箱.假定每天銷售量y(箱)與銷售價(jià)x(元/箱)之間滿足一次函數(shù)關(guān)系式.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式;
(3)當(dāng)每箱蘋(píng)果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( 。
A. 75°B. 60°C. 55°D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明想測(cè)量一棵樹(shù)的高度,他發(fā)現(xiàn)樹(shù)的影子恰好落在地面和一斜坡上;如圖,此時(shí)測(cè)得地面上的影長(zhǎng)為8米,坡面上的影長(zhǎng)為4米.已知斜坡的坡角為300,同一時(shí) 刻,一根長(zhǎng)為l米、垂直于地面放置的標(biāo)桿在地面上的影長(zhǎng)為2米,則樹(shù)的高度為【 】
A.米 B.12米 C.米 D.10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=2,點(diǎn)E是BC邊的中點(diǎn),連接AE,△AB′E和△ABE關(guān)于AE所在直線對(duì)稱,若△B′CD是直角三角形,則BC邊的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD與∠ABC的平分線AE、BF交于點(diǎn)P,連接PD,則tan∠ADP的值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交軸于,兩點(diǎn),交軸于點(diǎn).直線經(jīng)過(guò)點(diǎn),.
(1)求拋物線的解析式;
(2)點(diǎn)是直線上方拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①求面積最大值和此時(shí)的值;
②是直線上一動(dòng)點(diǎn),是否存在點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形,若存在,直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com